Chunlong Wei
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chunlong Wei.
Holography, Diffractive Optics, and Applications VI | 2014
Yancong Lu; Changhe Zhou; Chunlong Wei; Wei Jia; Xiansong Xiang; Yanyang Li; Junjie Yu; Shubin Li; Jin Wang; Kun Liu; Shengbin Wei
Optical encoders and laser interferometers are two primary solutions in nanometer metrology. As the precision of encoders depends on the uniformity of grating pitches, it is essential to evaluate pitches accurately. We use a CCD image sensor to acquire grating image for evaluating the pitches with high precision. Digital image correlation technique is applied to filter out the noises. We propose three methods for determining the pitches of grating with peak positions of correlation coefficients. Numerical simulation indicated the average of pitch deviations from the true pitch and the pitch variations are less than 0.02 pixel and 0.1 pixel for these three methods when the ideal grating image is added with salt and pepper noise, speckle noise, and Gaussian noise. Experimental results demonstrated that our method can measure the pitch of the grating accurately, for example, our home-made grating with 20μm period has 475nm peak-to-valley uniformity with 40nm standard deviation during 35mm range. Another measurement illustrated that our home-made grating has 40nm peak-to-valley uniformity with 10nm standard deviation. This work verified that our lab can fabricate high-accuracy gratings which should be interesting for practical application in optical encoders.
Chinese Optics Letters | 2017
Quan Zhou Quan Zhou; Changhe Zhou; Na Yu Na Yu; Chunlong Wei; Wei Jia; Yancong Lu
We propose a nonparallel double-grating structure in a spectral-beam combining technique, where two gratings are placed nonparallel satisfying the Littrow mount in the focal region of the convergent lens. The most attractive advantage of this approach is that it will compress the spectral span into half of its original spectrum, which means the number of combined elements can be doubled in the gain range of diode lasers. Experimental results demonstrate that the CW output power of the combined beam is 30.9 W with a spectral span of 7.0 nm, compared with its original spectrum span of 13.6 nm, and the spectral beam combining efficiency is 70.5%. In consideration that a single grating could have a high efficiency of > 97% in a bandwidth of over ten nanometers, the efficiency loss of the grating pair should be less than 6%, which is acceptable for most applications, so this method of using double gratings should be highly interesting for practical applications when a nearly doubled number of diode lasers could be combined into one single laser compared with the previous single-grating methods.
Holography, Diffractive Optics, and Applications VII | 2016
Xiansong Xiang; Chunlong Wei; Wei Jia; Changhe Zhou; Minkang Li; Yancong Lu
To produce large scale gratings by Scanning Beam Interference Lithography (SBIL), a light spot containing grating pattern is generated by two beams interfering, and a scanning stage is used to drive the substrate moving under the light spot. In order to locate the stage at the proper exposure positions, the period of the Interference pattern must be measured accurately. We developed a set of process to obtain the period value of two interfering beams at picometer level. The process includes data acquisition and data analysis. The data is received from a photodiode and a laser interferometer with sub-nanometer resolution. Data analysis differs from conventional analyzing methods like counting wave peaks or using Fourier transform to get the signal period, after a preprocess of filtering and envelope removing, the mean square error is calculated between the received signal and ideal sinusoid waves to find the best-fit frequency, thus an accuracy period value is acquired, this method has a low sensitivity to amplitude noise and a high resolution of frequency. With 405nm laser beams interfering, a pattern period value around 562nm is acquired by employing this process, fitting diagram of the result shows the accuracy of the period value reaches picometer level, which is much higher than the results of conventional methods.
Holography, Diffractive Optics, and Applications VII | 2016
Quan Zhou Quan Zhou; Changhe Zhou; Chunlong Wei; Na Yu Na Yu
The 38.5 W spectral combined beam of a 19-element 940 nm diode laser bar has been demonstrated in the spectral beam combining experiment by using a Beam Transformation System (BTS). The outputs had a diffraction-limited beam quality in the fast axis and M2=10.5 in the slow axis. Spectral beam combining was achieved by using an external cavity including a transmission diffraction grating.
Holography, Diffractive Optics, and Applications VII | 2016
Minkang Li; Changhe Zhou; Chunlong Wei; Wei Jia; Yancong Lu; Changcheng Xiang; Xiansong Xiang
Large-sized gratings are essential optical elements in laser fusion and space astronomy facilities. Scanning beam interference lithography is an effective method to fabricate large-sized gratings. To minimize the nonlinear phase written into the photo-resist, the image grating must be measured to adjust the left and right beams to interfere at their waists. In this paper, we propose a new method to conduct wavefront metrology based on phase-stepping interferometry. Firstly, a transmission grating is used to combine the two beams to form an interferogram which is recorded by a charge coupled device(CCD). Phase steps are introduced by moving the grating with a linear stage monitored by a laser interferometer. A series of interferograms are recorded as the displacement is measured by the laser interferometer. Secondly, to eliminate the tilt and piston error during the phase stepping, the iterative least square phase shift method is implemented to obtain the wrapped phase. Thirdly, we use the discrete cosine transform least square method to unwrap the phase map. Experiment results indicate that the measured wavefront has a nonlinear phase around 0.05 λ@404.7nm. Finally, as the image grating is acquired, we simulate the print-error written into the photo-resist.
Holography, Diffractive Optics, and Applications VII | 2016
Yancong Lu; Changhe Zhou; Shubin Li; Chunlong Wei; Minkang Li; Xiansong Xiang; Jili Deng; Changcheng Xiang; Wei Jia; Junjie Yu; Jin Wang; Chao Li
Displacement laser interferometers and grating interferometers are two main apparatus for the micron-nanometer displacement measurement over a long range. However, the laser interferometers, whose measuring scale is based on the wavelength, are very sensitive to the environment. On the contrast, the grating interferometers change the measuring scale from wavelength to grating period, which is much stable for the measurement results. But the resolution of grating interferometer is usually lower than that of laser interferometer. Therefore, further investigation is needed to improve the performance of grating interferometer. As we known, the optical subdivision is a main factor that affects the measurement resolution. In this paper, a grating interferometer with high optical subdivision is presented based on the Littrow configuration. We mainly use right angle prisms accompanied with plane mirrors to make the measuring lights diffracted by the grating scale for many times. An optical subdivision factor of 1/24 can be obtained by this technique. A main difficulty of this technique is that the grating scale should be with high diffraction efficiency. Fortunately, the measuring light is incident on the grating scale at the Littrow angle, the grating scale can be designed with very high efficiency easily in this condition. Compared with traditional grating interferometers, this kind of grating interferometer can greatly increase the measuring resolution and accuracy, which could be widely used in nanometer-scale fabrications and measurements.
Holography, Diffractive Optics, and Applications VII | 2016
Jili Deng; Changhe Zhou; Xiaona Yan; Chunlong Wei; Yancong Lu
A grating interferometer is presented based on the quasi-Littrow configuration. We mainly use a plane mirror to make the measuring light reflect and diffract between the mirror and grating scale for several times. According to the grating Doppler shift, the more times that measuring light diffracted, the higher optical subdivision can be obtained. As an example, a grating interferometer with an optical subdivision factor of 1/12 is designed. This work provides a technique to increase the resolution of the grating interferometer, which should be interesting for high precision measurement.
Holography, Diffractive Optics, and Applications VI | 2014
Xiansong Xiang; Yancong Lu; Chunlong Wei; Changhe Zhou
A new method of single-track absolute position encoding based on spatial frequency of stripes is proposed. Instead of using pseudorandom-sequence arranged stripes as in conventional situations, this kind of encoding method stores the location information in the frequency space of the stripes, which means the spatial frequency of stripes varies with position and indicates position. This encoding method has a strong fault-tolerant capability with single-stripe detecting errors. The method can be applied to absolute linear encoders, absolute photoelectric angle encoders or two-dimensional absolute linear encoders. The measuring apparatus includes a CCD image sensor and a microscope system, and the method of decoding this frequency code is based on FFT algorithm. This method should be highly interesting for practical applications as an absolute position encoding method.
Optics Communications | 2016
Yancong Lu; Chunlong Wei; Wei Jia; Shubin Li; Junjie Yu; Minkang Li; Changcheng Xiang; Xiansong Xiang; Jin Wang; Jianyong Ma; Changhe Zhou
Chinese Optics Letters | 2018
Na Yu Na Yu; Changhe Zhou; Chunlong Wei; Wei Jia; Yunkai Lu Yunkai Lu