Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chunmin C. Lo is active.

Publication


Featured researches published by Chunmin C. Lo.


Cell | 2008

N-acylphosphatidylethanolamine, a gut- derived circulating factor induced by fat ingestion, inhibits food intake.

Matthew P. Gillum; Dongyan Zhang; Xian-Man Zhang; Derek M. Erion; Rachel A. Jamison; Cheolsoo Choi; Jianying Dong; Marya Shanabrough; Hillary R. Duenas; David W. Frederick; Jennifer J. Hsiao; Tamas L. Horvath; Chunmin C. Lo; Pat Tso; Gary W. Cline; Gerald I. Shulman

N-acylphosphatidylethanolamines (NAPEs) are a relatively abundant group of plasma lipids of unknown physiological significance. Here, we show that NAPEs are secreted into circulation from the small intestine in response to ingested fat and that systemic administration of the most abundant circulating NAPE, at physiologic doses, decreases food intake in rats without causing conditioned taste aversion. Furthermore, (14)C-radiolabeled NAPE enters the brain and is particularly concentrated in the hypothalamus, and intracerebroventricular infusions of nanomolar amounts of NAPE reduce food intake, collectively suggesting that its effects may be mediated through direct interactions with the central nervous system. Finally, chronic NAPE infusion results in a reduction of both food intake and body weight, suggesting that NAPE and long-acting NAPE analogs may be novel therapeutic targets for the treatment of obesity.


Gastroenterology | 2010

Cholecystokinin knockout mice are resistant to high-fat diet-induced obesity

Chunmin C. Lo; Alexandra King; Linda C. Samuelson; Tammy L. Kindel; Therese Rider; Ronald J. Jandacek; Helen E. Raybould; Stephen C. Woods; Patrick Tso

BACKGROUND & AIMS Cholecystokinin (CCK) is a satiation peptide released during meals in response to lipid intake; it regulates pancreatic digestive enzymes that are required for absorption of nutrients. We proposed that mice with a disruption in the CCK gene (CCK knockout [CCK-KO] mice) that were fed a diet of 20% butter fat would have altered fat metabolism. METHODS We used quantitative magnetic resonance imaging to determine body composition and monitored food intake of CCK-KO mice using an automated measurement system. Intestinal fat absorption and energy expenditure were determined using a noninvasive assessment of intestinal fat absorption and an open circuit calorimeter, respectively. RESULTS After consuming a high-fat diet for 10 weeks, CCK-KO mice had reduced body weight gain and body fat mass and enlarged adipocytes, despite the same level of food intake as wild-type mice. CCK-KO mice also had defects in fat absorption, especially of long-chain saturated fatty acids, but pancreatic triglyceride lipase did not appear to have a role in the fat malabsorption. Energy expenditure was higher in CCK-KO than wild-type mice, and CCK-KO mice had greater oxidation of carbohydrates while on the high-fat diet. Plasma leptin levels in the CCK-KO mice fed the high-fat diet were markedly lower than in wild-type mice, although levels of insulin, gastric-inhibitory polypeptide, and glucagon-like peptide-1 were normal. CONCLUSIONS CCK is involved in regulating the metabolic rate and is important for lipid absorption and control of body weight in mice placed on a high-fat diet.


Physiology & Behavior | 2008

Characterization of Apolipoprotein A-IV in Brain Areas Involved in Energy Homeostasis

Ling Shen; Kevin J. Pearson; Ye Xiong; Chunmin C. Lo; Patrick Tso; Stephen C. Woods; W. Sean Davidson; Min Liu

Apolipoprotein A-IV (apo A-IV) is a satiation protein synthesized in the small intestine and hypothalamus. To further understand its anorectic mechanisms, we used immunohistochemical techniques to characterize the distribution of apo A-IV in brain areas involved in energy homeostasis. Dense apo A-IV staining was detected in the arcuate (ARC) and ventromedial hypothalamic nuclei with less staining in cells in the paraventricular and dorsomedial nuclei. In the brainstem, apo A-IV staining was found in the nucleus of the solitary tract. Double-staining immunohistochemistry revealed co-existence of apo A-IV with neuronal nuclei (a neuronal marker), but less with glial fibrillary acidic protein (a glial marker), in ARC, suggesting that apo A-IV is largely present in neurons. In the ARC, apo A-IV was co-localized with pro-opiomelanocortin (POMC), and apo A-IV administration stimulated hypothalamic POMC gene expression, suggesting that the brain apo A-IV system suppresses food intake by stimulating the ARC POMC system. To ascertain whether the apo A-IV detected in the brain is derived from the circulation, (125)I-labeled recombinant rat apo A-IV was intravenously injected into mice. No increase of radioactive apo A-IV was found in the brain, consistent with a lack of uptake of co-injected (99m)Tc-labeled albumin, indicating that circulating apo A-IV is unable to cross the blood brain barrier. These data collectively support the hypothesis that apo A-IV, produced by neuronal cells, may exert its anorectic action by interacting with catabolic regulatory neuropeptides.


Diabetes | 2011

Impaired Insulin Secretion and Enhanced Insulin Sensitivity in Cholecystokinin-Deficient Mice

Chunmin C. Lo; Silvana Obici; H. Henry Dong; Michael Haas; Dawnwen Lou; Dae Hyun Kim; Min Liu; David A. D’Alessio; Stephen C. Woods; Patrick Tso

OBJECTIVE Cholecystokinin (CCK) is released in response to lipid intake and stimulates insulin secretion. We hypothesized that CCK deficiency would alter the regulation of insulin secretion and glucose homeostasis. RESEARCH DESIGN AND METHODS We used quantitative magnetic resonance imaging to determine body composition and studied plasma glucose and insulin secretion of CCK gene knockout (CCK-KO) mice and their wild-type controls using intraperitoneal glucose and arginine infusions. The area of anti-insulin staining in pancreatic islets was measured by immunohistochemistry. Insulin sensitivity was assessed with euglycemic-hyperinsulemic clamps. RESULTS CCK-KO mice fed a low-fat diet had a reduced acute insulin response to glucose but a normal response to arginine and normal glucose tolerance, associated with a trend toward greater insulin sensitivity. However, when fed a high-fat diet (HFD) for 10 weeks, CCK-KO mice developed glucose intolerance despite increased insulin sensitivity that was associated with low insulin secretion in response to both glucose and arginine. The deficiency of insulin secretion in CCK-KO mice was not associated with changes in β-cell or islet size. CONCLUSIONS CCK is involved in regulating insulin secretion and glucose tolerance in mice eating an HFD. The impaired insulin response to intraperitoneal stimuli that do not typically elicit CCK release suggests that this hormone has chronic effects on β-cell adaptation to diet in addition to acute incretin actions.


Journal of Lipid Research | 2015

Apolipoprotein A-IV: a protein intimately involved in metabolism

Fei Wang; Alison B. Kohan; Chunmin C. Lo; Min Liu; Philip N. Howles; Patrick Tso

The purpose of this review is to summarize our current understanding of the physiological roles of apoA-IV in metabolism, and to underscore the potential for apoA-IV to be a focus for new therapies aimed at the treatment of diabetes and obesity-related disorders. ApoA-IV is primarily synthesized by the small intestine, attached to chylomicrons by enterocytes, and secreted into intestinal lymph during fat absorption. In circulation, apoA-IV is associated with HDL and chylomicron remnants, but a large portion is lipoprotein free. Due to its anti-oxidative and anti-inflammatory properties, and because it can mediate reverse-cholesterol transport, proposed functions of circulating apoA-IV have been related to protection from cardiovascular disease. This review, however, focuses primarily on several properties of apoA-IV that impact other metabolic functions related to food intake, obesity, and diabetes. In addition to participating in triglyceride absorption, apoA-IV can act as an acute satiation factor through both peripheral and central routes of action. It also modulates glucose homeostasis through incretin-like effects on insulin secretion, and by moderating hepatic glucose production. While apoA-IV receptors remain to be conclusively identified, the latter modes of action suggest that this protein holds therapeutic promise for treating metabolic disease.


Endocrinology | 2012

Apolipoprotein AIV requires cholecystokinin and vagal nerves to suppress food intake.

Chunmin C. Lo; Wolfgang Langhans; Maria Georgievsky; Myrtha Arnold; Jody L. Caldwell; Stacy Cheng; Min Liu; Stephen C. Woods; Patrick Tso

Apolipoprotein AIV (apo AIV) and cholecystokinin (CCK) are gastrointestinal satiation signals that are stimulated by fat consumption. Previous studies have demonstrated that peripheral apo AIV cannot cross the blood-brain barrier. In the present study, we hypothesized that peripheral apo AIV uses a CCK-dependent system and intact vagal nerves to relay its satiation signal to the hindbrain. To test this hypothesis, CCK-knockout (CCK-KO) mice and Long-Evan rats that had undergone subdiaphragmatic vagal deafferentation (SDA) were used. Intraperitoneal administration of apo AIV at 100 or 200 μg/kg suppressed food intake of wild-type (WT) mice at 30, 60, and 90 min. In contrast, the same dose did not reduce food intake in the CCK-KO mice. Blockade of the CCK 1 receptor by lorglumide, a CCK 1 receptor antagonist, attenuated apo AIV-induced satiation. Apo AIV at 100 μg/kg reduced food intake in SHAM rats but not in SDA rats. Furthermore, apo AIV elicited an increase in c-Fos-positive cells in the nucleus of the solitary tract (NTS), area postrema, dorsal motor nucleus of the vagus, and adjacent areas of WT mice but elicited only an attenuated increase in these same regions in CCK-KO mice. Apo AIV-induced c-Fos positive cells in the NTS and area postrema of WT mice were reduced by lorglumide. Lastly, apo AIV increased c-Fos positive cells in the NTS of SHAM rats but not in SDA rats. These observations imply that peripheral apo AIV requires an intact CCK system and vagal afferents to activate neurons in the hindbrain to reduce food intake.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2015

ApoA-IV: current and emerging roles in intestinal lipid metabolism, glucose homeostasis, and satiety

Alison B. Kohan; Fei Wang; Chunmin C. Lo; Min Liu; Patrick Tso

Apolipoprotein A-IV (apoA-IV) is secreted by the small intestine on chylomicrons into intestinal lymph in response to fat absorption. Many physiological functions have been ascribed to apoA-IV, including a role in chylomicron assembly and lipid metabolism, a mediator of reverse-cholesterol transport, an acute satiety factor, a regulator of gastric function, and, finally, a modulator of blood glucose homeostasis. The purpose of this review is to update our current view of intestinal apoA-IV synthesis and secretion and the physiological roles of apoA-IV in lipid metabolism and energy homeostasis, and to underscore the potential for intestinal apoA-IV to serve as a therapeutic target for the treatment of diabetes and obesity-related disease.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009

Effect of intraperitoneal and intravenous administration of cholecystokinin-8 and apolipoprotein AIV on intestinal lymphatic CCK-8 and apo AIV concentration

Chunmin C. Lo; Qing Yang; Shuqin Zheng; Katherine Carey; Matthew R. Tubb; W. Sean Davidson; Min Liu; Stephen C. Woods; Patrick Tso

CCK and apolipoprotein AIV (apo AIV) are gastrointestinal satiety signals whose synthesis and secretion by the gut are stimulated by fat absorption. Intraperitoneally administered CCK-8 is more potent in suppressing food intake than a similar dose administered intravenously, but the reason for this disparity is unclear. In contrast, both intravenous and intraperitoneally administered apo AIV are equally as potent in inhibiting food intake. When we compared the lymphatic concentration of CCK-8 and apo AIV, we found that neither intraperitoneally nor intravenously administered CCK-8 or apo AIV altered lymphatic flow rate. Interestingly, intraperitoneal administration of CCK-8 produced a significantly higher lymphatic concentration at 15 min than did intravenous administration. Intraperitoneal injection of apo AIV also yielded a higher lymphatic concentration at 30 min than did intravenous administration. Intraperitoneal administration of CCK-8 and apo AIV also resulted in a much longer period of elevated CCK-8 and apo AIV peptide concentration in lymph than intravenous administration. Furthermore, enzymatic activity of dipeptidyl peptidase IV (DPPIV) and aminopeptidase was higher in plasma than in lymph during fasting, and so, satiation peptides, such as CCK-8 and apo AIV in the lymph, are protected from degradation by the significantly lower DPPIV and aminopeptidase activity levels in lymph than in plasma. Therefore, the higher potency of intraperitoneally administered CCK-8 compared with intravenously administered CCK-8 in inhibiting food intake may be explained by both its higher concentration in lymph and the prolonged duration of its presence in the lamina propria.


Endocrinology | 2010

Estradiol Increases the Anorectic Effect of Central Apolipoprotein A-IV

Ling Shen; David Q.-H. Wang; Chunmin C. Lo; Patrick Tso; W. Sean Davidson; Stephen C. Woods; Min Liu

Estrogens have potent suppressive effects on food intake and body weight in many species, including humans. Compelling evidence suggests estrogens anorectic action is through an indirect mechanism by enhancing the strength of other physiological signals that reduce meal size such as apolipoprotein A-IV (apo A-IV), a satiation factor from the gut and brain. We determined whether estradiol, the primary form of estrogen, modulates the anorectic effect of apo A-IV. Intrafourth ventricular administration of low doses of apo A-IV reduced food intake to a greater extent in ovariectomized (OVX) rats cyclically treated with estradiol than in vehicle-treated OVX controls, implying that cyclic estradiol replacement increases the satiating potency of apo A-IV. OVX significantly increased food intake and body weight but decreased apo A-IV gene expression in the nucleus tractus solitarius (NTS). All of these alterations were reversed by cyclic regimen of estradiol treatment. The finding of colocalization of apo A-IV with estrogen receptor-alpha in the NTS suggests that estradiol might act locally in the NTS to up-regulate apo A-IV gene expression. Finally, OVX apo A-IV knockout mice had a smaller feeding response to estradiol because they ate significantly more food and gained more body weight than OVX wild-type controls during the period of cyclic estradiol replacement. These data indicate that an increased signaling of endogenous apo A-IV may partially mediate estradiol-induced inhibitory effect on feeding.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2012

Effect of peripheral administration of cholecystokinin on food intake in apolipoprotein AIV knockout mice

Go Yoshimichi; Chunmin C. Lo; Kellie L.K. Tamashiro; Liyun Ma; Dana M. Lee; Denovan P. Begg; Min Liu; Randall R. Sakai; Stephen C. Woods; Hironobu Yoshimatsu; Patrick Tso

Apolipoprotein AIV (apo AIV) and cholecystokinin (CCK) are satiation factors secreted by the small intestine in response to lipid meals. Apo AIV and CCK-8 has an additive effect to suppress food intake relative to apo AIV or CCK-8 alone. In this study, we determined whether CCK-8 (1, 3, or 5 μg/kg ip) reduces food intake in fasted apo AIV knockout (KO) mice as effectively as in fasted wild-type (WT) mice. Food intake was monitored by the DietMax food system. Apo AIV KO mice had significantly reduced 30-min food intake following all doses of CCK-8, whereas WT mice had reduced food intake only at doses of 3 μg/kg and above. Post hoc analysis revealed that the reduction of 10-min and 30-min food intake elicited by each dose of CCK-8 was significantly larger in the apo AIV KO mice than in the WT mice. Peripheral CCK 1 receptor (CCK1R) gene expression (mRNA) in the duodenum and gallbladder of the fasted apo AIV KO mice was comparable to that in WT mice. In contrast, CCK1R mRNA in nodose ganglia of the apo AIV KO mice was upregulated relative to WT animals. Similarly, upregulated CCK1R gene expression was found in the brain stem of apo AIV KO mice by in situ hybridization. Although it is possible that the increased satiating potency of CCK in apo AIV KO mice is mediated by upregulation of CCK 1R in the nodose ganglia and nucleus tractus solitarius, additional experiments are required to confirm such a mechanism.

Collaboration


Dive into the Chunmin C. Lo's collaboration.

Top Co-Authors

Avatar

Patrick Tso

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Min Liu

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ling Shen

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Yang

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandra King

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Liyun Ma

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge