Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chunrong Li is active.

Publication


Featured researches published by Chunrong Li.


Oncogene | 2009

Nuclear EGFR Contributes to Acquired Resistance to Cetuximab

Chunrong Li; Mari Iida; Emily F. Dunn; Amol Ghia; Deric L. Wheeler

Epidermal growth factor receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase involved in the etiology of several human cancers. Cetuximab is an EGFR-blocking antibody that has been approved for the treatment of patients with head and neck squamous cell carcinoma and metastatic colorectal cancer. Previous reports have shown that EGFR translocation to the nucleus is associated with cell proliferation. Here we investigated mechanisms of acquired resistance to cetuximab using a model derived from the non-small cell lung cancer line H226. We demonstrated that cetuximab-resistant cells overexpress HER family ligands including epidermal growth factor (EGF), amphiregulin, heparin-binding EGF and β-cellulin. Overexpression of these ligands is associated with the nuclear translocation of the EGFR and this process was mediated by the Src family kinases (SFK). Treatment of cetuximab-resistant cells with the SFK inhibitor, dasatinib, resulted in loss of nuclear EGFR, increased membrane expression of the EGFR and resensitization to cetuximab. In addition, expression of a nuclear localization sequence-tagged EGFR in cetuximab-sensitive cells increased resistance to cetuximab both in vitro and in mouse xenografts. Collectively, these data suggest that nuclear expression of EGFR may be an important molecular determinant of resistance to cetuximab therapy and provides a rationale for investigating nuclear EGFR as a biomarker for cetuximab response. Further, these data suggest a rationale for the design of clinical trials that examine the value of treating patients with cetuximab-resistant tumors with inhibitors of SFKs in combination with cetuximab.


Oncogene | 2011

Dasatinib sensitizes KRAS mutant colorectal tumors to cetuximab

Emily F. Dunn; Mari Iida; R A Myers; D A Campbell; K A Hintz; Eric A. Armstrong; Chunrong Li; Deric L. Wheeler

KRAS mutation is a predictive biomarker for resistance to cetuximab (Erbitux) in metastatic colorectal cancer (mCRC). This study sought to determine if KRAS mutant CRC lines could be sensitized to cetuximab using dasatinib (BMS-354825, Sprycel), a potent, orally bioavailable inhibitor of several tyrosine kinases, including the Src family kinases (SFKs). We analyzed 16 CRC lines for: (1) KRAS mutation status, (2) dependence on mutant KRAS signaling and (3) expression level of epidermal growth factor receptor (EGFR) and SFKs. From these analyses, we selected three KRAS mutant (LS180, LoVo and HCT116) cell lines and two KRAS wild-type cell lines (SW48 and CaCo2). In vitro, using poly-D-lysine/laminin plates, KRAS mutant cell lines were resistant to cetuximab, whereas KRAS wild-type lines showed sensitivity to cetuximab. Treatment with cetuximab and dasatinib showed a greater antiproliferative effect on KRAS mutant lines when compared with either agent alone in vitro and in vivo. To investigate potential mechanisms for this antiproliferative response in the combinatorial therapy, we performed Human Phospho-Kinase Antibody Array analysis, measuring the relative phosphorylation levels of 39 intracellular proteins in untreated, cetuximab, dasatinib or the combinatorial treatment in the KRAS mutant lines LS180, LoVo and HCT116 cells. The results of this experiment showed a decrease in a broad spectrum of kinases centered on the β-catenin pathway, the mitogen-activated protein kinase (MAPK) pathway, AKT/mammalian target of rapamycin (mTOR) pathway and the family of signal transducers and activators of transcription (STATs) when compared with the untreated control or monotherapy treatments. Next, we analyzed tumor growth with cetuximab, dasatinib or their combination in vivo. KRAS mutant xenografts showed resistance to cetuximab therapy, whereas KRAS wild type demonstrated an antitumor response when treated with cetuximab. KRAS mutant tumors exhibited minimal response to dasatinib monotherapy. However, as in vitro, KRAS mutant lines exhibited a response to the combination of cetuximab and dasatinib. Combinatorial treatment of KRAS mutant xenografts resulted in decreased cell proliferation, as measured by Ki67, and higher rates of apoptosis, as measured by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling). The data presented in this study indicate that dasatinib can sensitize KRAS mutant CRC tumors to cetuximab and may do so by altering the activity of several key signaling pathways. Furthermore, these results suggest that signaling via EGFR and SFKs may be necessary for cell proliferation and survival of KRAS mutant CRC tumors. These data strengthen the rationale for clinical trials combining cetuximab and dasatinib in the KRAS mutant CRC genetic setting.


Cancer Research | 2011

p53 Modulates Acquired Resistance to EGFR Inhibitors and Radiation

Shyhmin Huang; Sergio Benavente; Eric A. Armstrong; Chunrong Li; Deric L. Wheeler; Paul M. Harari

There is presently great interest in mechanisms of acquired resistance to epidermal growth factor receptor (EGFR) inhibitors that are now being used widely in the treatment of a variety of common human cancers. To investigate these mechanisms, we established EGFR inhibitor-resistant clones from non-small cell lung cancer cells. A comparative analysis revealed that acquired resistance to EGFR inhibitors was associated consistently with the loss of p53 and cross-resistance to radiation. To examine the role of p53, we first knocked down p53 in sensitive parental cells and found a reduction in sensitivity to both EGFR inhibitors and radiation. Conversely, restoration of functional p53 in EGFR inhibitor-resistant cells was sufficient to resensitize them to EGFR inhibitors or radiation in vitro and in vivo. Further studies indicate that p53 may enhance sensitivity to EGFR inhibitors and radiation via induction of cell-cycle arrest, apoptosis, and DNA damage repair. Taken together, these findings suggest a central role of p53 in the development of acquired resistance to EGFR inhibitors and prompt consideration to apply p53 restoration strategies in future clinical trials that combine EGFR inhibitors and radiation.


Radiotherapy and Oncology | 2010

Dasatinib blocks cetuximab- and radiation-induced nuclear translocation of the epidermal growth factor receptor in head and neck squamous cell carcinoma

Chunrong Li; Mari Iida; Emily F. Dunn; Deric L. Wheeler

BACKGROUND AND PURPOSE The aberrant expression of epidermal growth factor receptor (EGFR) has been linked to the etiology of head and neck squamous cell carcinoma (HNSCC). The first major phase III trial combining cetuximab with radiation confirmed a strong survival advantage. However, both cetuximab and radiation can promote EGFR translocation to the nucleus where it enhances resistance to both of these modalities. In this report we sought to determine how to block cetuximab- and radiation-induced translocation of EGFR to the nucleus in HNSCC cell lines. MATERIAL AND METHODS We utilized three established HNSCC cell lines, SCC1, SCC6 and SCC1483 and measured nuclear translocation of EGFR after treatment with cetuximab or radiation. We then utilized dasatinib (BMS-354825), a potent, orally bioavailable inhibitor of several tyrosine kinases, including the Src family kinases, to determine if SFKs blockade could abrogate cetuximab- and radiation-induced nuclear EGFR translocation. RESULTS Cetuximab and radiation treatment of all three HNSCC lines lead to translocation of the EGFR to the nucleus. Blockade of SFKs abrogated cetuximab- and radiation-induced EGFR translocation to the nucleus. CONCLUSIONS The data presented in this report suggest that both cetuximab and radiation can promote EGFR translocation to the nucleus and dasatinib can inhibit this process. Collectively these findings may suggest that dasatinib can limit EGFR translocation to the nucleus and may enhance radiotherapy plus cetuximab in HNSCC.


Oncogene | 2013

Yes and Lyn play a role in nuclear translocation of the Epidermal Growth Factor Receptor

Mari Iida; Toni M. Brand; David A. Campbell; Chunrong Li; Deric L. Wheeler

The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in human cancers. Cetuximab is an anti-EGFR antibody that has been approved for use in oncology. Previously we investigated mechanisms of resistance to cetuximab using a model derived from the non-small cell lung cancer line NCI-H226. We demonstrated that cetuximab-resistant clones (CtxR) had increased nuclear localization of the EGFR. This process was mediated by Src family kinases (SFKs), and nuclear EGFR had a role in resistance to cetuximab. To better understand SFK-mediated nuclear translocation of EGFR, we investigated which SFK member(s) controlled this process as well as the EGFR tyrosine residues that are involved. Analyses of mRNA and protein expression indicated upregulation of the SFK members Yes (v-Yes-1 yamaguchi sarcoma viral oncogene) and Lyn (v-yes-1 Yamaguchi sarcoma viral-related oncogene homolog) in all CtxR clones. Further, immunoprecipitation analysis revealed that EGFR interacts with Yes and Lyn in CtxR clones, but not in cetuximab-sensitive (CtxS) parental cells. Using RNAi interference, we found that knockdown of either Yes or Lyn led to loss of EGFR translocation to the nucleus. Conversely, overexpression of Yes or Lyn in low nuclear EGFR-expressing CtxS parental cells led to increased nuclear EGFR. Chromatin immunoprecipitation (ChIP) assays confirmed nuclear EGFR complexes associated with the promoter of the known EGFR target genes B-Myb and iNOS. Further, all CtxR clones exhibited upregulation of B-Myb and iNOS at the mRNA and protein levels. siRNAs directed at Yes or Lyn led to decreased binding of EGFR complexes to the B-Myb and iNOS promoters based on ChIP analyses. SFKs have been shown to phosphorylate EGFR on tyrosines 845 and 1101 (Y845 and Y1101), and mutation of Y1101, but not Y845, impaired nuclear entry of the EGFR. Taken together, our findings demonstrate that Yes and Lyn phosphorylate EGFR at Y1101, which influences EGFR nuclear translocation in this model of cetuximab resistance.


International Journal of Radiation Oncology Biology Physics | 2008

Irradiation of Varying Volumes of Rat Lung to Same Mean Lung Dose: a Little to a Lot or a Lot to a Little?

Vladimir A. Semenenko; Robert C. Molthen; Chunrong Li; Natalya Morrow; Rongshan Li; Swarajit N. Ghosh; Meetha Medhora; X. Allen Li

PURPOSE To investigate whether irradiating small lung volumes with a large dose or irradiating large lung volumes with a small dose, given the same mean lung dose (MLD), has a different effect on pulmonary function in laboratory animals. METHODS AND MATERIALS WAG/Rij/MCW male rats were exposed to single fractions of 300 kVp X-rays. Four treatments, in decreasing order of irradiated lung volume, were administered: (1) whole lung irradiation, (2) right lung irradiation, (3) left lung irradiation, and (4) irradiation of a small lung volume with four narrow beams. The irradiation times were chosen to accumulate the same MLD of 10, 12.5, or 15 Gy with each irradiated lung volume. The development of radiation-induced lung injury for < or =20 weeks was evaluated as increased breathing frequency, mortality, and histopathologic changes in the irradiated and control rats. RESULTS A significant elevation of respiratory rate, which correlated with the lung volume exposed to single small doses (> or =5 Gy), but not with the MLD, was observed. The survival of the rats in the whole-lung-irradiated group was MLD dependent, with all events occurring between 4.5 and 9 weeks after irradiation. No mortality was observed in the partial-volume irradiated rats. CONCLUSIONS The lung volume irradiated to small doses might be the dominant factor influencing the loss of pulmonary function in the rat model of radiation-induced lung injury. Caution should be used when new radiotherapy techniques that result in irradiation of large volumes of normal tissue are used for the treatment of lung cancer and other tumors in the thorax.


Molecular Cancer Therapeutics | 2015

Small Molecule Inhibition of MDM2–p53 Interaction Augments Radiation Response in Human Tumors

Lauryn R. Werner; Shyhmin Huang; David M. Francis; Eric A. Armstrong; Fang Ma; Chunrong Li; Gopal Iyer; Jude Canon; Paul M. Harari

MDM2–p53 interaction and downstream signaling affect cellular response to DNA damage. AMG 232 is a potent small molecule inhibitor that blocks the interaction of MDM2 and p53. We examined the capacity of AMG 232 to augment radiation response across a spectrum of human tumor cell lines and xenografts. AMG 232 effectively inhibited proliferation and enhanced radiosensitivity via inhibition of damage repair signaling. Combined AMG 232 and radiation treatment resulted in the accumulation of γH2AX-related DNA damage and induction of senescence with promotion of apoptotic and/or autophagic cell death. Several molecules involved in senescence, autophagy, and apoptosis were specifically modulated following the combined AMG 232/radiation treatment, including FoxM1, ULK-1, DRAM, and BAX. In vivo xenograft studies confirmed more potent antitumor and antiangiogenesis efficacy with combined AMG 232/radiation treatment than treatment with drug or radiation alone. Taken together, these data identify the capacity of AMG 232 to augment radiation response across a variety of tumor types harboring functional p53. Mol Cancer Ther; 14(9); 1994–2003. ©2015 AACR.


Cancer Biology & Therapy | 2011

Erlotinib is a viable treatment for tumors with acquired resistance to cetuximab

Toni M. Brand; Emily F. Dunn; Mari Iida; Rebecca Myers; Kellie T. Kostopoulos; Chunrong Li; Chimera R. Peet; Deric L. Wheeler

The epidermal growth factor receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase (RTK) and is recognized as a key mediator of tumorigenesis in many human tumors. Currently there are five EGFR inhibitors used in oncology, two monoclonal antibodies (panitumumab, and cetuximab) and three tyrosine kinase inhibitors (erlotinib, gefitinib, and lapatinib). Both strategies of EGFR inhibition have demonstrated clinical successes, however many tumors remain non-responsive or acquire resistance during therapy. To explore potential molecular mechanisms of acquired resistance to cetuximab we previously established a series of cetuximab-resistant clones by chronically exposing the NCI-H226 NSCLC cell line to escalating doses of cetuximab. Cetuximab-resistant clones exhibited a dramatic increase in steady-state expression of EGFR, HER2, and HER3 receptors as well as increased signaling through the MAPK and AKT pathways. RNAi studies demonstrated dependence of cetuximab-resistant clones on the EGFR signaling network. These findings prompted investigation on whether or not cells with acquired resistance to cetuximab would be sensitive to the EGFR targeted TKI erlotinib. In vitro, erlotinib was able to decrease signaling through the EGFR axis, decrease cellular proliferation, and induce apoptosis. To determine if erlotinib could have therapeutic benefit in vivo, we established cetuximab-resistant NCI-H226 mouse xenografts, and subsequently treated them with erlotinib. Mice harboring cetuximab-resistant tumors treated with erlotinib exhibited either a tumor regression or growth delay as compared to vehicle controls. Analysis of the erlotinib treated tumors demonstrated a decrease in cell proliferation and increase rates of apoptosis. The work presented herein suggests that 1) cells with acquired resistance to cetuximab maintain their dependence on EGFR and 2) tumors developing resistance to cetuximab can benefit from subsequent treatment with erlotinib, providing rationale for its use in the setting of cetuximab resistance.


Molecular Cancer Therapeutics | 2015

Antitumor effects of MEHD7945A, a dual specific antibody against EGFR and HER3, in combination with radiation in lung and head and neck cancers

Chunrong Li; Shyhmin Huang; Eric A. Armstrong; David M. Francis; Lauryn R. Werner; Mark X. Sliwkowski; Albert J. van der Kogel; Paul M. Harari

Human epidermal growth factor receptor family members (EGFR, HER2, HER3, and HER4) play important roles in tumorigenesis and response to cancer therapeutics. In this study, we evaluated the capacity of the dual-target antibody MEHD7945A that simultaneously targets EGFR and HER3 to modulate radiation response in lung and head and neck cancer models. Antitumor effects of MEHD7945A in combination with radiation were evaluated in cell culture and tumor xenograft models. Mechanisms that may contribute to increased radiation killing by MEHD7945A, including DNA damage and inhibition of EGFR–HER signaling pathways, were analyzed. Immunohistochemical analysis of tumor xenografts was conducted to evaluate the effect of MEHD7945A in combination with radiation on tumor growth and microenvironment. MEHD7945A inhibited basal and radiation-induced EGFR and HER3 activation resulting in the inhibition of tumor cell growth and enhanced radiosensitivity. MEHD7945A was more effective in augmenting radiation response than treatment with individual anti-EGFR or anti-HER3 antibodies. An increase in DNA double-strand breaks associated γ-H2AX was observed in cells receiving combined treatment with MEHD7945A and radiation. Immunohistochemical staining evaluation in human tumor xenografts showed that MEHD7945A combined with radiation significantly reduced the expression of markers of tumor proliferation and tumor vasculature. These findings reveal the capacity of MEHD7945A to augment radiation response in lung and head and neck cancers. The dual EGFR/HER3–targeting action of MEHD7945A merits further investigation and clinical trial evaluation as a radiation sensitizer in cancer therapy. Mol Cancer Ther; 14(9); 2049–59. ©2015 AACR.


Clinical Cancer Research | 2016

Pan-HER Inhibitor Augments Radiation Response in Human Lung and Head and Neck Cancer Models

David M. Francis; Shyhmin Huang; Eric A. Armstrong; Lauryn R. Werner; Craig R. Hullett; Chunrong Li; Zachary S. Morris; Adam D. Swick; Michael Kragh; Johan Lantto; Randall J. Kimple; Paul M. Harari

Purpose: Aberrant regulation of the EGF receptor family (EGFR, HER2, HER3, HER4) contributes to tumorigenesis and metastasis in epithelial cancers. Pan-HER represents a novel molecular targeted therapeutic composed of a mixture of six monoclonal antibodies against EGFR, HER2, and HER3. Experimental Design: In the current study, we examine the capacity of Pan-HER to augment radiation response across a series of human lung and head and neck cancers, including EGFR inhibitor–resistant cell lines and xenografts. Results: Pan-HER demonstrates superior antiproliferative and radiosensitizing impact when compared with cetuximab. The mechanisms underlying these effects appear to involve attenuation of DNA damage repair, enhancement of programmed cell death, cell-cycle redistribution, and induction of cellular senescence. Combined treatment of Pan-HER with single or fractionated radiation in human tumor xenografts reveals a potent antitumor and regrowth delay impact compared with Pan-HER or radiation treatment alone. Conclusions: These data highlight the capacity of Pan-HER to augment radiation response in lung and head and neck cancer models and support investigation of Pan-HER combined with radiation as a promising clinical therapeutic strategy. Clin Cancer Res; 22(3); 633–43. ©2015 AACR.

Collaboration


Dive into the Chunrong Li's collaboration.

Top Co-Authors

Avatar

Paul M. Harari

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Deric L. Wheeler

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Eric A. Armstrong

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Shyhmin Huang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Mari Iida

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Toni M. Brand

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Lauryn R. Werner

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Emily F. Dunn

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

David M. Francis

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge