Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chuntao Liu is active.

Publication


Featured researches published by Chuntao Liu.


Bulletin of the American Meteorological Society | 2006

Where are the most intense thunderstorms on Earth

Edward J. Zipser; Daniel J. Cecil; Chuntao Liu; Stephen W. Nesbitt; David P. Yorty

The instruments on the Tropical Rainfall Measuring Mission (TRMM) satellite have been observing storms as well as rainfall since December 1997. This paper shows the results of a systematic search through seven full years of the TRMM database to find indicators of uncommonly intense storms. These include strong (> 40 dBZ) radar echoes extending to great heights, high lightning flash rates, and very low brightness temperatures at 37 and 85 GHz. These are used as proxy variables, indicating powerful convective updrafts. The main physical principles supporting this assertion involve the effects of such updrafts in producing and lofting large ice particles high into the storm, where TRMMs radar easily detects them near storm top. TRMMs passive microwave radiometer detects the large integrated ice water path as very low brightness temperatures, while high lightning flash rates are a physically related but instrumentally independent indicator. The geographical locations of these very intense convective storms ...


Journal of Applied Meteorology and Climatology | 2008

A Cloud and Precipitation Feature Database from Nine Years of TRMM Observations

Chuntao Liu; Edward J. Zipser; Daniel J. Cecil; Stephen W. Nesbitt; Steven C. Sherwood

An event-based method of analyzing the measurements from multiple satellite sensors is presented by using observations of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR), Microwave Imager (TMI), Visible and Infrared Scanner (VIRS), and Lightning Imaging System (LIS). First, the observations from PR, VIRS, TMI, and LIS are temporally and spatially collocated. Then the cloud and precipitation features are defined by grouping contiguous pixels using various criteria, including surface rain, cold infrared, or microwave brightness temperature. The characteristics of measurements from different sensors inside these features are summarized. Then, climatological descriptions of many properties of the identified features are generated. This analysis method condenses the original information of pixellevel measurements into the properties of events, which can greatly increase the efficiency of searching and sorting the observed historical events. Using the TRMM cloud and precipitation feature database, the regional variations of rainfall contribution by features with different size, intensity, and PR reflectivity vertical structure are shown. Above the freezing level, land storms tend to have larger 20-dBZ area and reach higher altitude than is the case for oceanic storms, especially those land storms over central Africa. Horizontal size and the maximum reflectivity of oceanic storms decrease with altitude. For land storms, these intensity measures increase with altitude between 2 km and the freezing level and decrease more slowly with altitude above the freezing level than for ocean storms.


Journal of Climate | 2007

Global Distribution of Tropical Deep Convection: Different Perspectives from TRMM Infrared and Radar Data

Chuntao Liu; Edward J. Zipser; Stephen W. Nesbitt

Cold cloud features (CCFs) are defined by grouping six full years of Tropical Rainfall Measuring Mission (TRMM) infrared pixels with brightness temperature at 10.8-m wavelength (TB11) less than or equal to 210 and 235 K. Then the precipitation radar (PR)-observed precipitation area and reflectivity profiles inside CCFs are summarized and compared with the area and minimum temperature of the CCFs. Comparing the radar with the infrared data, significant regional differences are found, quantified, and used to describe regional differences in selected properties of deep convective systems in the Tropics. Inside 4 million CCFs, 35% (57%) of cold cloud area with TB11 235 K (210 K) have rain detected by the PR near the surface. Only 1% of the area of TB11 210 K have 20 dBZ reaching 14 km. CCFs colder than 210 K occur most frequently over the west Pacific Ocean, but 20-dBZ echoes extending above 10 km in this region are disproportionately rare by comparison to many continental regions. Ratios of PR-detected raining area to area of TB11 235 K are higher over central Africa, Argentina, and India than over tropical oceans. After applying these ratios to the climatological Global Precipitation Index (GPI) tropical rainfall estimates, the regional distribution is more consistent with the rainfall retrieval from the PR. This suggests that the discrepancy between GPI- and PR-retrieved rainfall can be partly explained with the nonraining anvil. Categorization of CCFs based on the minimum TB11, size of CCFs, and 20-dBZ heights demonstrates that 20-dBZ echoes above 17 km occur most frequently over land, while the coldest clouds occur most frequently over the west Pacific. The vertical distances between the cloud-top heights determined from TB11 and PR 20-dBZ echo-top heights are smaller over land than over ocean and may be considered as another proxy for convective intensity.


Journal of Climate | 2009

Warm rain in the tropics: seasonal and regional distributions based on 9 yr of TRMM data.

Chuntao Liu; Edward J. Zipser

Abstract How much precipitation is contributed by warm rain systems over the tropics? What is the typical size, intensity, and echo top of warm rain events observed by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar over different regions of the tropics? What proportion of warm raining areas is actually attached to the edges of cold systems? Are there mesoscale warm raining systems, and if so, where and when do they occur? To answer these questions, a 9-yr TRMM precipitation feature database is used in this study. First, warm rain features in 20°S–20°N are selected by specifying precipitation features 1) with minimum infrared brightness temperature > 0°C, 2) with TRMM Precipitation Radar (PR) echo top below freezing level, or 3) without any ice-scattering signature in the microwave observations, respectively. Then, the geographical, seasonal, and diurnal variations of the rain volume inside warm rain features defined in these three ways are presented. The characteristics of warm rain fe...


Journal of Atmospheric and Oceanic Technology | 2010

Status of the TRMM 2A12 Land Precipitation Algorithm

Kaushik Gopalan; Nai Yu Wang; Ralph Ferraro; Chuntao Liu

Abstract This paper describes improvements to the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) land rainfall algorithm in version 7 (v7) of the TRMM data products. The correlations between rain rates and TMI 85-GHz brightness temperatures (Tb) for convective and stratiform rain are generated using 7 years of collocated TMI and TRMM precipitation radar (PR) data. The TMI algorithm for estimating the convective ratio of rainfall is also modified. This paper highlights both the improvements in the v7 algorithm and the continuing problems with the land rainfall retrievals. It is demonstrated that the proposed changes to the algorithm significantly lower the overestimation by TMI globally and over large sections of central Africa and South America. Also highlighted are the problems with the 2A12 land algorithm that have not been addressed in the version 7 algorithm, such as large regional and seasonal dependence of biases in the TMI rain estimates, and potential changes to the algorithm ...


Monthly Weather Review | 2009

Rainfall Characteristics and Convective Properties of Mei-Yu Precipitation Systems over South China, Taiwan, and the South China Sea. Part I: TRMM Observations

Weixin Xu; Edward J. Zipser; Chuntao Liu

Abstract Rainfall characteristics and mesoscale properties of precipitation systems in mei-yu seasons over South China, Taiwan, and the South China Sea (SCS) during 1998–2007 are investigated in this study. Mei-yu rainbands are defined using the Tropical Rainfall Measuring Mission 3B42 rainfall product and then applied to divide the mei-yu season into the mei-yu and break periods. In the 10-yr “climatology,” on average, the mei-yu rainbands have a lifetime of 4–5 days and most frequently occur near the South China coast. During the mei-yu periods, rainfall maxima are found over the Pearl River Delta, the foothills of the Yun-Gui Plateau, and Wuyi Mountain, with the first two maxima corresponding to especially heavy rainfall. Intraseasonal variations on the convective structures, especially over land, are distinct among the mei-yu, break, pre-mei-yu, and post-mei-yu, based on analysis of convection intensity proxies and vertical radar reflectivity profiles of precipitation features. Lightning flash rates a...


IEEE Transactions on Geoscience and Remote Sensing | 2013

An Evaluation of Microwave Land Surface Emissivities Over the Continental United States to Benefit GPM-Era Precipitation Algorithms

Ralph Ferraro; Christa D. Peters-Lidard; C. Hernandez; F.J. Turk; Filipe Aires; C. Prigent; Xin Lin; Sid-Ahmed Boukabara; Fumie A. Furuzawa; Kaushik Gopalan; K. W. Harrison; F. Karbou; Li Li; Chuntao Liu; Hirohiko Masunaga; L. Moy; Sarah Ringerud; Gail Skofronick-Jackson; Yudong Tian; Nai-Yu Wang

Passive microwave (PMW) satellite-based precipitation over land algorithms rely on physical models to define the most appropriate channel combinations to use in the retrieval, yet typically require considerable empirical adaptation of the model for use with the satellite measurements. Although low-frequency channels are better suited to measure the emission due to liquid associated with rain, most techniques to date rely on high-frequency, scattering-based schemes since the low-frequency methods are limited to the highly variable land surface background, whose radiometric contribution is substantial and can vary more than the contribution of the rain signal. Thus, emission techniques are generally useless over the majority of the Earths surface. As a first step toward advancing to globally useful physical retrieval schemes, an intercomparison project was organized to determine the accuracy and variability of several emissivity retrieval schemes. A three-year period (July 2004-June 2007) over different targets with varying surface characteristics was developed. The PMW radiometer data used includes the Special Sensor Microwave Imagers, SSMI Sounder, Advanced Microwave Scanning Radiometer (AMSR-E), Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), Advanced Microwave Sounding Units, and Microwave Humidity Sounder, along with land surface model emissivity estimates. Results from three specific targets in North America were examined. While there are notable discrepancies among the estimates, similar seasonal trends and associated variability were noted. Because of differences in the treatment surface temperature in the various techniques, it was found that comparing the product of temperature and emissivity yielded more insight than when comparing the emissivity alone. This product is the major contribution to the overall signal measured by PMW sensors and, if it can be properly retrieved, will improve the utility of emission techniques for over land precipitation retrievals. As a more rigorous means of comparison, these emissivity time series were analyzed jointly with precipitation data sets, to examine the emissivity response immediately following rain events. The results demonstrate that while the emissivity structure can be fairly well characterized for certain surface types, there are other more complex surfaces where the underlying variability is more than can be captured with the PMW channels. The implications for Global Precipitation Measurement-era algorithms suggest that physical retrievals are feasible over vegetated land during the warm seasons.


Journal of the Atmospheric Sciences | 2010

Diurnal Variations of Global Thunderstorms and Electrified Shower Clouds and Their Contribution to the Global Electrical Circuit

Chuntao Liu; Earle R. Williams; Edward J. Zipser; G. B. Burns

The long-standing mainstay of support for C. T. R. Wilson’s global circuit hypothesis is the similarity between the diurnal variation of thunderstorm days in universal time and the Carnegie curve of electrical potential gradient. This rough agreement has sustained the widespread view that thunderstorms are the ‘‘batteries’’ for the global electrical circuit. This study utilizes 10 years of Tropical Rainfall Measuring Mission (TRMM) observations to quantify the global occurrence of thunderstorms with much better accuracy and to validate the comparison by F. J. W. Whipple 80 years ago. The results support Wilson’s original ideas that both thunderstorms and electrified shower clouds contribute to the DC global circuit by virtue of negative charge carried downward by precipitation. First, the precipitation features (PFs) are defined by grouping the pixels with rain using 10 years of TRMM observations. Thunderstorms are identified from these PFs with lightning flashes observed by the Lightning Imaging Sensor. PFs without lightning flashes but with a 30-dBZ radar echotop temperature lower than 2108C over land and 2178C over ocean are selected as possibly electrified shower clouds. The universal diurnal variation of rainfall, the raining area from the thunderstorms, and possibly electrified shower clouds in different seasons are derived and compared with the diurnal variations of the electric field observed at Vostok, Antarctica. The result shows a substantially better match from the updated diurnal variations of the thunderstorm area to the Carnegie curve than Whipple showed. However, to fully understand and quantify the amount of negative charge carried downward by precipitation in electrified storms, more observations of precipitation current in different types of electrified shower clouds are required.


Journal of Applied Meteorology and Climatology | 2011

A TRMM-Based Tropical Cyclone Cloud and Precipitation Feature Database

Haiyan Jiang; Chuntao Liu; Edward J. Zipser

AbstractThe Tropical Rainfall Measuring Mission (TRMM) satellite has provided invaluable data for tropical cyclone (TC) research since December 1997. The challenge, however, is how to analyze and efficiently utilize all of the information from several instruments on TRMM that observe the same target. In this study, a tropical cyclone precipitation, cloud, and convective cell feature (TCPF) database has been developed by using observations of the TRMM precipitation radar (PR), Microwave Imager (TMI), Visible and Infrared Scanner (VIRS), Lightning Imaging System (LIS), and the TRMM 3B42 rainfall product. The database is based on an event-based method that analyzes the measurements from multiple sensors. This method condenses the original information of pixel-level measurements into the properties of events, which can significantly increase the efficiency of searching and sorting the observed historical TCs. With both convective and rainfall properties included, the database offers the potential to aid the r...


Journal of Geophysical Research | 2008

On the diurnal cycle of deep convection, high‐level cloud, and upper troposphere water vapor in the Multiscale Modeling Framework

Yunyan Zhang; Stephen A. Klein; Chuntao Liu; Baijun Tian; Roger T. Marchand; John M. Haynes; Renata McCoy; Yuying Zhang; Thomas P. Ackerman

embeds a cloud-resolving model (CRM) at each grid column of a general circulation model to replace traditional parameterizations of moist convection and large-scale condensation. This study evaluates the diurnal cycle of deep convection, high-level clouds, and upper troposphere water vapor by applying an infrared (IR) brightness temperature (Tb) and a precipitation radar (PR) simulator to the CRM column data. Simulator results are then compared with IR radiances from geostationary satellites and PR reflectivities from the TropicalRainfallMeasuringMission(TRMM).Whiletheactualsurfaceprecipitationratein the MMF has a reasonable diurnal phase and amplitude when compared with TRMM observations, the IR simulator results indicate an inconsistency in the diurnal anomalies of high-level clouds between the model and the geostationary satellite data. Primarily because of its excessive high-level clouds, the MMF overestimates the simulated precipitation index (PI) and fails to reproduce the observed diurnal cycle phase relationships among PI, high-level clouds, and upper troposphere relative humidity. The PR simulator results show that over the tropical oceans, the occurrence fraction of reflectivity in excess of 20 dBZ is almost 1 order of magnitude larger than the TRMM data especially at altitudes above 6 km. Both results suggest that the MMF oceanic convection is overactive and possible reasons for this bias are discussed. However, the joint distribution of simulated IR Tb and PR reflectivity indicates that the most intense deep convection is found more often over tropical land than ocean, in agreement with previous observational studies.

Collaboration


Dive into the Chuntao Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Peterson

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Douglas M. Mach

University of Alabama in Huntsville

View shared research outputs
Top Co-Authors

Avatar

Wiebke Deierling

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Christina Kalb

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Daniel J. Cecil

University of Alabama in Huntsville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weixin Xu

Colorado State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge