Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chunxi Zhang is active.

Publication


Featured researches published by Chunxi Zhang.


Applied Optics | 2014

Influences of laser source on phase-sensitivity optical time-domain reflectometer-based distributed intrusion sensor

Xiang Zhong; Chunxi Zhang; Lijing Li; Sheng Liang; Qin Li; Qiying Lü; Xiuxin Ding; Qiaoyuan Cao

This paper investigates the influences of laser source on distributed intrusion sensor based on a phase-sensitivity optical time-domain reflectometer (φ-OTDR). A numerical simulation is performed to illustrate the relationships between trace-to-trace fluctuations and frequency drift rate as well as pulse width, and fluctuations ratio coefficient (FRC) is proposed to evaluate the level of trace-to-trace fluctuations. The simulation results show that the FRC grows with increasing frequency drift rate and pulse width, reaches, and maintains the peak value when the frequency drift rate and/or the pulse width are high enough. Furthermore, experiments are implemented using a φ-OTDR prototype with a low frequency drift laser (<5u2009u2009MHz/min), of which the high frequency drift rate is simulated by frequency sweeping. The good agreement of experimental with simulated results in the region of high frequency drift rate validates the theoretical analysis, and the huge differences between them in the region of low frequency drift rate indicate the place of laser frequency drift among system noises. The conclusion is useful for choosing laser sources and improving the performance of φ-OTDR.


Applied Optics | 2012

Design principle for sensing coil of fiber-optic current sensor based on geometric rotation effect

Chunxi Zhang; Chuansheng Li; Xiaxiao Wang; Lijing Li; Jia Yu; Xiujuan Feng

The design principle exploiting the geometric rotation effect for the sensing coil of the fiber-optic current sensor (FOCS) on the basis of the polarization-rotated reflection interferometer is investigated. The sensing coil is formed by winding the low birefringence single-mode optical fiber in a toroidal spiral. The effects of the linear birefringence on the scale factor of the sensor can be suppressed with the reciprocal circular birefringence by appropriately designing the geometric parameters of the sensing coil. When the rated current is 1200 A(rms), the designed sensing coil can ensure the scale factor error of the sensor to satisfy the requirements of the 0.2 S class specified in IEC60044-8 over a temperature range from -40 °C to 60 °C.


Applied Optics | 2009

Edge technique for direct detection of strain and temperature based on optical time domain reflectometry

Haiyun Xia; Chunxi Zhang; Hongqian Mu; Dongsong Sun

A hybrid technique for real-time direct detection of strain and temperature along a single-mode fiber is proposed. The temperature is directly detected from the Raman backscattering in the time domain. To retrieve the strain profile from the Brillouin backscattering, an edge technique is introduced and a response function of the Fabry-Perot interferometer for the Brillouin backscattering is defined for the first time to our knowledge. The outgoing laser and the Brillouin backscattering are measured on different interference orders through different channels of the Fabry-Perot interferometer. A low-resolution reference channel and a high-resolution Brillouin channel are designed to keep both a high measurement sensitivity and a wide dynamic range. The measurement is based on detecting the bandwidth changes and the frequency shifts of the Brillouin backscattering; thus the resulting measurement is insensitive to the power fluctuation of the backscattering and the laser frequency jitter or drift. Neither time-consuming frequency scanning nor heavy data processing is needed, which makes real-time detection possible. The dynamic range of the edge technique can be increased substantially by using a piezoelectric tunable and capacitive-servo-stabilized Fabry-Perot interferometer. We highlight the potential of this technique by numerical simulations. Given that the uncertainty of the temperature measurement is 0.5 degrees C and that the spatial and temporal resolutions are 10 cm and 1 s, the strain uncertainty is less than 20 microepsilon within a 2 km distance when the strain is below 0.4%, and it is not more than 110 microepsilon within a 4 km distance when the strain is below 0.6%.


Journal of Lightwave Technology | 2014

An Analysis on the Optimization of Closed-Loop Detection Method for Optical Voltage Sensor Based on Pockels Effect

Hui Li; Liyang Cui; Zhili Lin; Lijing Li; Chunxi Zhang

In engineering practice, the closed-loop optical voltage sensor (OVS) based on Pockels effect cannot reach the required precision level mainly due to the various disturbance and noise of system, so the application of OVS for low voltage measurement is restricted. Considering the cross coupling of the main and second closed-loops, the model of disturbance and noise of system that adopts the four-state modulation method is analyzed in the main closed-loop of OVS. Based on the established noise-perturbed stochastic model of OVS, we design a closed-loop detection algorithm for the OVS system to guarantee the mean-square exponential stability with a prescribed H∞ performance in order to optimize the detection precision of OVS. The experimental results show that the detection precision of OVS is 0.144 V while the relative measurement error of the scale factor is within ± 0.15% in measuring low AC voltages from 140 to 500 V, which verifies the effectiveness of the proposed detection scheme.


Applied Optics | 2013

Birefringence elimination of bismuth germanate crystal in quasi-reciprocal reflective optical voltage sensor.

Xiujuan Feng; Lijing Li; Xiaxiao Wang; Chunxi Zhang; Jia Yu; Chuansheng Li

Bismuth germanate (Bi(4)Ge(3)O(12), BGO) has been widely utilized for the application of Pockels effect-based voltage and electric field sensors, because it possesses no unwanted effects ideally. However, there are multiple birefringences in BGO crystal induced by natural imperfections, temperature-dependent strain, and external pressure (or stress), which influences the demodulation of the Pockels effect induced by the voltage to be measured. For a Pockels effect-based quasi-reciprocal reflective optical voltage sensor, the influences of the multiple birefringences in BGO crystal are investigated and an elimination scheme is also proposed in this paper. The feasibility of the proposed elimination scheme is simulated and experimentally verified.


Optical Engineering | 2014

Autonomous integrated navigation method based on the strapdown inertial navigation system and Lidar

Xiaoyue Zhang; Zhili Lin; Chunxi Zhang

Abstract. An integrated navigation method based on the strapdown inertial navigation system (SINS) and Doppler Lidar was presented and its validity is demonstrated by practical experiments. A very effective and independent integrated navigation mode is realized that both an inertial navigation system (INS) and Lidar are not interfered with or screened by electromagnetic waves. In our work, the SINS error model was first introduced, and the velocity error model was transformed into body reference coordinates. Then the expression for measurement model of SINS/Lidar integrated navigation was deduced under Lidar reference coordinates. For application of land or vehicle navigation, the expression for the measurement model was simplified, and observation analysis was carried out. Finally, numerical simulation and vehicle test results were carried out to validate the availability and utility of the proposed SINS/Lidar integrated navigation method for land navigation.


Optical Engineering | 2014

Signal-to-noise ratio enhancement of phase-sensitive optical time-domain reflectometry based on power spectrum analysis

Qin Li; Chunxi Zhang; Lijing Li; Xiang Zhong

Abstract. A location technique based on power spectrum analysis for the phase-sensitive optical time-domain reflectometry is proposed. The frequency characteristics of the backscattered signal at a time interval over the sensing fiber are provided to discriminate the disturbance region from other regions. Compared with conventional location techniques, the proposed method significantly enhances the signal-to-noise ratio (SNR). Therefore, it can provide a high-performance and cost-effective solution avoiding the use of the laser with super low-frequency drift. Although the frequency drift of the laser utilized in the experiment is 230u2009u2009MHz/min, the average SNR is improved to be 20.3 dB and the maximum location error is 100 m over the monitored length of 9 km during 20 experiments.


Sensors | 2016

Application of Fast Dynamic Allan Variance for the Characterization of FOGs-Based Measurement While Drilling

Lu Wang; Chunxi Zhang; Shuang Gao; Tao Wang; Tie Lin; Xianmu Li

The stability of a fiber optic gyroscope (FOG) in measurement while drilling (MWD) could vary with time because of changing temperature, high vibration, and sudden power failure. The dynamic Allan variance (DAVAR) is a sliding version of the Allan variance. It is a practical tool that could represent the non-stationary behavior of the gyroscope signal. Since the normal DAVAR takes too long to deal with long time series, a fast DAVAR algorithm has been developed to accelerate the computation speed. However, both the normal DAVAR algorithm and the fast algorithm become invalid for discontinuous time series. What is worse, the FOG-based MWD underground often keeps working for several days; the gyro data collected aboveground is not only very time-consuming, but also sometimes discontinuous in the timeline. In this article, on the basis of the fast algorithm for DAVAR, we make a further advance in the fast algorithm (improved fast DAVAR) to extend the fast DAVAR to discontinuous time series. The improved fast DAVAR and the normal DAVAR are used to responsively characterize two sets of simulation data. The simulation results show that when the length of the time series is short, the improved fast DAVAR saves 78.93% of calculation time. When the length of the time series is long (6×105 samples), the improved fast DAVAR reduces calculation time by 97.09%. Another set of simulation data with missing data is characterized by the improved fast DAVAR. Its simulation results prove that the improved fast DAVAR could successfully deal with discontinuous data. In the end, a vibration experiment with FOGs-based MWD has been implemented to validate the good performance of the improved fast DAVAR. The results of the experience testify that the improved fast DAVAR not only shortens computation time, but could also analyze discontinuous time series.


Journal of Lightwave Technology | 2015

Analysis and Design of Loop Gains to Optimize the Dynamic Performance of Optical Voltage Sensor Based on Pockels Effect

Hui Li; Liyang Cui; Xiaxiao Wang; Zhili Lin; Chunxi Zhang

A design method of loop gains is proposed for improving the fast dynamic tracking performance of optical voltage sensor (OVS) based on Pockels effect. The distribution principle of loop gains is investigated in theory according to the characteristics of closed-loop error of OVS. Based on the obtained distribution principle of loop gains, the hardware circuit and the control parameters of the controller are designed to improve the signal to noise ratio (SNR) of closed-loop error and the dynamic performance of OVS, respectively. The experimental results demonstrate that the system can achieve the high dynamic performance under the high detection precision: OVS can accurately track 13th harmonic with 1.57% measurement error and 4.24° phase error, and the long term steady accuracy of power frequency voltage is within ±0.1%. The experimental results validate the effectiveness of our new design method of loop gains.


Sensors | 2017

Performance Analysis of Global Navigation Satellite System Signal Acquisition Aided by Different Grade Inertial Navigation System under Highly Dynamic Conditions

Chunxi Zhang; Xianmu Li; Shuang Gao; Tie Lin; Lu Wang

Under the high dynamic conditions, Global Navigation Satellite System (GNSS) signals produce great Doppler frequency shifts, which hinders the fast acquisition of signals. Inertial Navigation System (INS)-aided acquisition can improve the acquisition performance, whereas the accuracy of Doppler shift and code phase estimation are mainly determined by the INS precision. The relation between the INS accuracy and Doppler shift estimation error has been derived, while the relation between the INS accuracy and code phase estimation error has not been deduced. In this paper, in order to theoretically analyze the effects of INS errors on the performance of Doppler shift and code phase estimations, the connections between them are re-deduced. Moreover, the curves of the corresponding relations are given for the first time. Then, in order to have a better verification of the INS-aided acquisition, a high dynamic scenario is designed. Furthermore, by using the deduced mathematical relation, the effects of different grade INS on the GNSS (including Global Positioning System (GPS) and BeiDou Navigation Satellite System (BDS)) signal acquisition are analyzed. Experimental results demonstrate that the INS-aided acquisition can reduce the search range of local frequency and code phase, and achieve fast acquisition. According to the experimental results, a suitable INS can be chosen for the deeply coupled integration.

Collaboration


Dive into the Chunxi Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge