Chunxiang Sun
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chunxiang Sun.
Immunology | 2007
Adeline Koh; Andre Paes Batista da Silva; Anil K. Bansal; Manju Bansal; Chunxiang Sun; Hyejin Lee; Michael Glogauer; Jaro Sodek; Ron Zohar
Osteopontin (OPN) is important for the function of fibroblasts, macrophages and lymphocytes during inflammation and wound healing. In recent studies of experimental colitis we demonstrated exacerbated tissue destruction in OPN‐null mice, associated with reduced tumour necrosis factor‐α expression and increased myeloperoxidase activity. The objective of this investigation therefore was to determine the importance of OPN expression in neutrophil function. Although, in contrast to macrophages, neutrophils expressed low levels of OPN with little or no association with the CD44 receptor, intraperitoneal recruitment of neutrophils in OPN‐null mice was impaired in response to sodium periodate. The importance of exogenous OPN for neutrophil recruitment was demonstrated by a robust increase in peritoneal infiltration of PMNs in response to injections of native or recombinant OPN. In vitro, OPN–/– neutrophils exhibited reduced chemokinesis and chemotaxis towards N‐formyl methionyl leucyl phenylalanine (fMLP), reflecting a reduction in migration speed and polarization. Exogenous OPN, which was chemotactic for the neutrophils, rescued the defects in polarization and migration speed of the OPN–/– neutrophils. In contrast, the defensive and cytocidal activities of OPN–/– neutrophils, measured by assays for phagocytosis, generation of reactive oxygen species, cytokine production and matrix metalloproteinase‐9, were not impaired. These studies demonstrate that, while exogenous OPN may be important for the recruitment and migration of neutrophils, expression of OPN by neutrophils is not required for their destructive capabilities.
Journal of Bone and Mineral Research | 2007
Yongqiang Wang; Dina Lebowitz; Chunxiang Sun; Herman Thang; Marc D. Grynpas; Michael Glogauer
Rac small GTPases may play an important regulatory role in osteoclastogenesis. Our in vitro and in vivo results show that both Rac1 and Rac2 are required for optimal osteoclast differentiation, but Rac1 is more critical. Rac1 is the key Rac isoform responsible for regulating ROS generation and the actin cytoskeleton during the multiple stages of osteoclast differentiation.
Blood | 2011
Jan W. P. Kuiper; Chunxiang Sun; Marco A. O. Magalhaes; Michael Glogauer
Directional cell migration is an essential requirement for efficient neutrophil translocation to sites of infection and requires the establishment of a polarized cell characterized by an actin-rich leading edge facing the chemoattractant gradient. The asymmetrical accumulation of phosphatidylinositol(3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)] in the up-gradient leading edge is a hallmark of polarization and regulates the recruitment and localization of various effector proteins at the leading-edge plasma membrane. How shallow gradients of chemoattractants trigger and maintain a much steeper intracellular gradient of PtdIns(3,4,5)P(3) is a critical question in the study of leukocyte chemotaxis. Our data demonstrate that the migration of neutrophils toward the chemoattractant N-formyl-L-methionyl-L-leucyl-L-phenylalanine depends on the generation of reactive oxygen species by the phagocytic NADPH oxidase (NOX2) and subsequent oxidation and inhibition of phosphatase and tensin homolog. Moreover, we show that events downstream of PtdIns(3,4,5)P(3), including phosphorylation of AKT, Rac activation, uncapping of actin filaments, and directional migration, can be attenuated by ROS scavengers or genetic ablation of NOX2. Using Rac mutants that are defective in their ability to activate NOX2, we show that Rac regulates a redox-mediated feedback loop that mediates directional migration of neutrophils.
Journal of Bone and Mineral Research | 2009
Roland Leung; Yongqiang Wang; Karl Cuddy; Chunxiang Sun; Joyce Magalhaes; Marc D. Grynpas; Michael Glogauer
Osteoclastogenesis (OCG) results from the fusion of monocytes after stimulation with macrophage colony‐stimulating factor (M‐CSF) and receptor activator of NF‐κB ligand (RANKL). Migration of monocytes into close proximity precedes critical fusion events that are required for osteoclast formation. Cellular migration requires leading‐edge actin cytoskeleton assembly that drives cellular locomotion. Filamin A (FLNa) cross‐links F‐actin filaments in the leading edge of migrating cells and also has been shown to regulate signal transduction during cell migration. However, little is known about the possible role of FLNa in osteoclastogenesis. Our objective in this study was to investigate the role of FLNa in osteoclastogenesis. Bone marrow monocytes isolated from the tibiae and femora of wild type (WT) and Flna‐null mice were cultured for 6 days with M‐CSF and RANKL, and osteoclasts were identified by tartrate‐resistant acid phosphatase (TRACP) staining. The Flna‐null mouse skeletal phenotype was characterized using dual‐energy X‐ray absorptiometry (DXA) to analyze the skeleton, as well as tests on blood chemistry. Osteoclast levels in vivo were quantified by counting of TRACP‐stained histologic sections of distal femora. To elucidate the mechanisms by which Flna regulates osteoclastogenesis, migration, actin polymerization, and activation of Rho GTPases, Rac1, Cdc42, and RhoA were assessed in monocytes during in vitro OCG. Deficiencies in migration were rescued using constitutively active Rac1 and Cdc42 TAT fusion proteins. The RANKL signaling pathway was evaluated for activation by monitoring nuclear translocation of NFκB and c‐jun and expression of key osteoclast genes using quantitative real‐time polymerase chain reaction (qRT‐PCR). Our results show that Flna‐null monocytes formed fewer osteoclasts in vitro, and those that were formed were smaller with fewer nuclei. Decreased OCG was reflected in vivo in TRACP‐stained histologic bone sections. Flna‐null monocytes experienced impaired migratory ability. When OCG was performed at increasing starting cellular plating densities in order to decrease intercellular distances, there was progressive rescue of Flna‐null osteoclast formation comparable with WT levels, confirming that Flna regulates monocyte migration prefusion. Activation of the actin cytoskeleton regulators Rac1, Cdc42, and RhoA and actin free‐barbed end generation were partially or completely abrogated in Flna‐null monocytes; however, monocyte migration was restored on rescuing with constitutively active Rac1 and Cdc42 TAT fusion proteins. We conclude that filamin A is required for osteoclastogenesis by regulating actin dynamics via Rho GTPases that control monocyte migration.
Experimental Cell Research | 2016
Flavia S. Lakschevitz; Siavash Hassanpour; Ayala Rubin; Noah Fine; Chunxiang Sun; Michael Glogauer
Neutrophils are the most abundant white blood cell and are an essential component of the innate immune system. A complete cataloguing of cell surface markers has not been undertaken for neutrophils isolated from circulation as well as healthy and inflamed tissues. To identify cell-surface markers specific to human neutrophils, we used high-throughput flow cytometry to screen neutrophil populations isolated from blood and oral rinses from healthy and chronic periodontitis patients against a panel of 374 known cluster of differentiation (CD) antibodies. This screen identified CD11b, CD16, and CD66b as markers that are consistently expressed on neutrophils independent of the cell location, level of activation and disease state. Cell sorting against CD11b, CD16 and CD66b allowed for the enrichment of mature neutrophils, yielding neutrophil populations with up to 99% purity. These findings suggest an ideal surface marker set for isolating mature neutrophils from humans. The screen also demonstrated that tissue neutrophils from chronically inflamed tissue display a unique surface marker set compared to tissue neutrophils present in healthy, non-inflamed tissues.
Cellular & Molecular Immunology | 2015
Flavia S. Lakschevitz; Michelle B. Visser; Chunxiang Sun; Michael Glogauer
It has recently been established that neutrophils, the most abundant leukocytes, are capable of changes in gene expression during inflammatory responses. However, changes in the transcriptome as the neutrophil leaves the bone marrow have yet to be described. We hypothesized that neutrophils are transcriptionally active cells that alter their gene expression profiles as they migrate into the vasculature and then into inflamed tissues. Our goal was to provide an overview of how the neutrophils transcriptome changes as they migrate through different compartments using microarray and bio-informatic approaches. Our study demonstrates that neutrophils are highly plastic cells where normal environmental cues result in a site-specific neutrophil transcriptome. We demonstrate that neutrophil genes undergo one of four distinct expression change patterns as they move from bone marrow through the circulation to sites of inflammation: (i) continuously increasing; (ii) continuously decreasing; (iii) a down-up-down; and (iv) an up-down-up pattern. Additionally, we demonstrate that the neutrophil migration signaling network and the balance between anti-apoptotic and pro-apoptotic signaling are two of the main regulatory mechanisms that change as the neutrophil transits through compartments.
American Journal of Pathology | 2016
Corneliu Sima; Guy M. Aboodi; Flavia S. Lakschevitz; Chunxiang Sun; Michael B. Goldberg; Michael Glogauer
The balance between reactive oxygen species and antioxidants plays an important role in periodontal health. We previously demonstrated that high reactive oxygen species production by oral polymorphonuclear neutrophils (oPMNs) in chronic periodontitis (CP) refractory to conventional therapy is associated with severe destruction of periodontium. Herein, we show that inhibition of antioxidant production through down-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in oPMN, despite enhanced recruitment in the oral cavity, is associated with severe CP. Twenty-four genes in the Nrf2-mediated oxidative stress response pathway were down-regulated in PMNs of diseased patients. Downstream of Nrf2, levels of oPMN superoxide dismutase 1 and catalase were decreased in severe CP, despite increased recruitment. Nrf2(-/-) mice had more severe loss of periodontium in response to periodontitis-inducing subgingival ligatures compared with wild-types. Levels of 8-hydroxy-deoxyguanosine were increased in periodontal lesions of Nrf2(-/-) mice, indicating high oxidative damage. We report, for the first time, Nrf2 pathway down-regulation in oPMNs of patients with severe CP. PMNs of CP patients may be primed for low antioxidant response in the context of high recruitment in the oral cavity, resulting in increased oxidative tissue damage.
PLOS ONE | 2013
Chunxiang Sun; Carol Forster; Fumihiko Nakamura; Michael Glogauer
Filamin-A (FLNa) has been shown to be a key cross-linker of actin filaments in the leading edge of a motile melanoma cell line, however its role in neutrophils undergoing chemotaxis is unknown. Using a murine transgenic model in which FLNa is selectively deleted in granulocytes, we report that, while neutrophils lacking FLNa show normal polarization and pseudopod extension, they exhibit obvious defects in uropod retraction. This uropod retraction defect was found to be a direct result of reduced FLNa mediated activation of the small GTPase RhoA and myosin mediated actin contraction in the FLNa null cells. This results in a neutrophil recruitment defect in FLNa null mice. The compensatory increase in FLNb levels that was observed in the FLNa null neutrophils may be sufficient to compensate for the lack of FLNa at the leading edge allowing for normal polarization, however this compensation is unable to regulate RhoA activated tail retraction at the rear of the cell.
PLOS ONE | 2016
Ashkan Javid; Nataliya Zlotnikov; Helena Pětrošová; Tian Tian Tang; Yang Zhang; Anil K. Bansal; Rhodaba Ebady; Maitry Parikh; Mijhgan Ahmed; Chunxiang Sun; Susan Newbigging; Yae Ram Kim; Marianna Santana Sosa; Michael Glogauer; Tara J. Moriarty
Insulin-insufficient type 1 diabetes is associated with attenuated bactericidal function of neutrophils, which are key mediators of innate immune responses to microbes as well as pathological inflammatory processes. Neutrophils are central to immune responses to the Lyme pathogen Borrelia burgdorferi. The effect of hyperglycemia on host susceptibility to and outcomes of B. burgdorferi infection has not been examined. The present study investigated the impact of sustained obesity-independent hyperglycemia in mice on bacterial clearance, inflammatory pathology and neutrophil responses to B. burgdorferi. Hyperglycemia was associated with reduced arthritis incidence but more widespread tissue colonization and reduced clearance of bacterial DNA in multiple tissues including brain, heart, liver, lung and knee joint. B. burgdorferi uptake and killing were impaired in neutrophils isolated from hyperglycemic mice. Thus, attenuated neutrophil function in insulin-insufficient hyperglycemia was associated with reduced B. burgdorferi clearance in target organs. These data suggest that investigating the effects of comorbid conditions such as diabetes on outcomes of B. burgdorferi infections in humans may be warranted.
PLOS ONE | 2013
Michelle B. Visser; Chunxiang Sun; Adeline Koh; Richard P. Ellen; Michael Glogauer
The major outer sheath protein (Msp) of Treponema denticola inhibits neutrophil polarization and directed chemotaxis together with actin dynamics in vitro in response to the chemoattractant N-formyl-methionine-leucine-phenylanine (fMLP). Msp disorients chemotaxis through inhibition of a Rac1-dependent signaling pathway, but the upstream mechanisms are unknown. We challenged murine bone marrow neutrophils with enriched native Msp to determine the role of phospholipid modifying enzymes in chemotaxis and actin assembly downstream of fMLP-stimulation. Msp modulated cellular phosphoinositide levels through inhibition of phosphatidylinositol 3-kinase (PI3-kinase) together with activation of the lipid phosphatase, phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Impaired phosphatidylinositol[(3,4,5)]-triphosphate (PIP3) levels prevented recruitment and activation of the downstream mediator Akt. Release of the actin capping proteins gelsolin and CapZ in response to fMLP was also inhibited by Msp exposure. Chemical inhibition of PTEN restored PIP3 signaling, as measured by Akt activation, Rac1 activation, actin uncapping, neutrophil polarization and chemotaxis in response to fMLP-stimulation, even in the presence of Msp. Transduction with active Rac1 also restored fMLP-mediated actin uncapping, suggesting that Msp acts at the level of PIP3 in the hierarchical feedback loop of PIP3 and Rac1 activation. Taken together, Msp alters the phosphoinositide balance in neutrophils, impairing the cell “compass”, which leads to inhibition of downstream chemotactic events.