Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chunxiao Lv is active.

Publication


Featured researches published by Chunxiao Lv.


ACS Applied Materials & Interfaces | 2016

Seaweed-Derived Route to Fe2O3 Hollow Nanoparticles/N-Doped Graphene Aerogels with High Lithium Ion Storage Performance

Long Liu; Xianfeng Yang; Chunxiao Lv; Aimei Zhu; Xiaoyi Zhu; Shaojun Guo; Chengmeng Chen; Dongjiang Yang

We developed a nanoscale Kirkendall effect assisted method for simple and scalable synthesis of three-dimensional (3D) Fe2O3 hollow nanoparticles (NPs)/graphene aerogel through the use of waste seaweed biomass as new precursors. The Fe2O3 hollow nanoparticles with an average shell thickness of ∼6 nm are distributed on 3D graphene aerogel, and also act as spacers to make the separation of the neighboring graphene nanosheets. The graphene-Fe2O3 aerogels exhibit high rate capability (550 mA h g(-1) at 5 A g(-1)) and excellent cyclic stability (729 mA h g(-1) at 0.1 A g(-1) for 300 cycles), outperforming all of the reported Fe2O3/graphene hybrid electrodes, due to the hollow structure of the active Fe2O3 NPs and the unique structure of the 3D graphene aerogel framework. The present work represents an important step toward high-level control of high-performance 3D graphene-Fe-based NPs aerogels for maximizing lithium storage with new horizons for important fundamental and technological applications.


ACS central science | 2015

Egg-Box Structure in Cobalt Alginate: A New Approach to Multifunctional Hierarchical Mesoporous N-Doped Carbon Nanofibers for Efficient Catalysis and Energy Storage

Daohao Li; Chunxiao Lv; Long Liu; Yanzhi Xia; Xilin She; Shaojun Guo; Dongjiang Yang

Carbon nanomaterials with both doped heteroatom and porous structure represent a new class of carbon nanostructures for boosting electrochemical application, particularly sustainable electrochemical energy conversion and storage applications. We herein demonstrate a unique large-scale sustainable biomass conversion strategy for the synthesis of earth-abundant multifunctional carbon nanomaterials with well-defined doped heteroatom level and multimodal pores through pyrolyzing electrospinning renewable natural alginate. The key part for our chemical synthesis is that we found that the egg-box structure in cobalt alginate nanofiber can offer new opportunity to create large mesopores (∼10–40 nm) on the surface of nitrogen-doped carbon nanofibers. The as-prepared hierarchical carbon nanofibers with three-dimensional pathway for electron and ion transport are conceptually new as high-performance multifunctional electrochemical materials for boosting the performance of oxygen reduction reaction (ORR), lithium ion batteries (LIBs), and supercapacitors (SCs). In particular, they show amazingly the same ORR activity as commercial Pt/C catalyst and much better long-term stability and methanol tolerance for ORR than Pt/C via a four-electron pathway in alkaline electrolyte. They also exhibit a large reversible capacity of 625 mAh g–1 at 1 A g–1, good rate capability, and excellent cycling performance for LIBs, making them among the best in all the reported carbon nanomaterials. They also represent highly efficient carbon nanomaterials for SCs with excellent capacitive behavior of 197 F g–1 at 1 A g–1 and superior stability. The present work highlights the importance of biomass-derived multifunctional mesoporous carbon nanomaterials in enhancing electrochemical catalysis and energy storage.


Journal of Materials Chemistry | 2015

Architecture-controlled synthesis of MxOy (M = Ni, Fe, Cu) microfibres from seaweed biomass for high-performance lithium ion battery anodes

Chunxiao Lv; Xianfeng Yang; Ahmad Umar; Yanzhi Xia; Yi Jia; Lu Shang; Tierui Zhang; Dongjiang Yang

The increasing demand for high performance lithium ion batteries (LIBs) has aroused great interest in developing high specific capacity, cycle performance and rate capability anode materials. Transition metal oxides (TMOs) have attracted much attention as promising anode materials for rechargeable LIBs owing to their high theoretical capacity. Here, a general strategy has been developed to fabricate high-performance fibrous TMO anodes such as elemental Ni doped NiO fibre (NiO/Ni/C-F), yolk–shell structured carbon@Fe2O3 fibre (C@Fe2O3-F), and hollow CuO fibre (CuO-HF) with controllable nanostructures by using alginate microfibres as templates. The key to the formation of various TMO micro-/nano-structures is the templating ability of the natural structure of long alginate molecular chains, where the metal cations can be confined in an “egg-box” via coordination with negatively charged α-L-guluronate blocks. When tested as anode materials for LIB half cells, these fibrous electrodes deliver excellent cycling performance with no capacity decrease after 200 cycles (793 mA h g−1, NiO/Ni/C-F, 0.072 A g−1; 1035 mA h g−1, C@Fe2O3-F, 0.1 A g−1; 670 mA h g−1, CuO-HF, 0.067 A g−1), and demonstrate great rate performance at different current densities. This finding highlights a general, green and eco-friendly strategy for the scale-up production of potential high-performance TMO anodes for LIBs.


ACS Nano | 2017

Tuning the Shell Number of Multishelled Metal Oxide Hollow Fibers for Optimized Lithium-Ion Storage

Jin Sun; Chunxiao Lv; Fan Lv; Shuai Chen; Daohao Li; Ziqi Guo; Wei Han; Dongjiang Yang; Shaojun Guo

Searching the long-life transition-metal oxide (TMO)-based materials for future lithium-ion batteries (LIBs) is still a great challenge because of the mechanical strain resulting from volume change of TMO anodes during the lithiation/delithiation process. To well address this challenging issue, we demonstrate a controlled method for making the multishelled TMO hollow microfibers with tunable shell numbers to achieve the optimal void for efficient lithium-ion storage. Such a particularly designed void can lead to a short diffusion distance for fast diffusion of Li+ ions and also withstand a large volume variation upon cycling, both of which are the key for high-performance LIBs. Triple-shelled TMO hollow microfibers are a quite stable anode material for LIBs with high reversible capacities (NiO: 698.1 mA h g-1 at 1 A g-1; Co3O4: 940.2 mA h g-1 at 1 A g-1; Fe2O3: 997.8 mA h g-1 at 1 A g-1), excellent rate capability, and stability. The present work opens a way for rational design of the void of multiple shells in achieving the stable lithium-ion storage through the biomass conversion strategy.


Advanced Science | 2017

Multishelled Ni-Rich Li(NixCoyMnz)O2 Hollow Fibers with Low Cation Mixing as High-Performance Cathode Materials for Li-Ion Batteries

Yihui Zou; Xianfeng Yang; Chunxiao Lv; Tongchao Liu; Yanzhi Xia; Lu Shang; Geoffrey I. N. Waterhouse; Dongjiang Yang; Tierui Zhang

A simple seaweed biomass conversion strategy is proposed to synthesize highly porous multishelled Ni‐rich Li(NixCoyMnz)O2 hollow fibers with very low cation mixing. The low cation mixing results from the cation confinement by the novel “egg‐box” structure in the alginate template. These hollow fibers exhibit remarkable energy density, high‐rate capacity, and long‐term cycling stability when used as cathode material for Li‐ion batteries.


ACS Applied Materials & Interfaces | 2016

New Approach to Create TiO2(B)/Carbon Core/Shell Nanotubes: Ideal Structure for Enhanced Lithium Ion Storage

Xiaoyi Zhu; Xianfeng Yang; Chunxiao Lv; Shaojun Guo; Jianjiang Li; Zhanfeng Zheng; Huaiyong Zhu; Dongjiang Yang

To achieve uniform carbon coating on TiO2 nanomaterials, high temperature (>500 °C) annealing treatment is a necessity. However, the annealing treatment inevitably leads to the strong phase transformation from TiO2(B) with high lithium ion storage (LIS) capacity to anatase with low LIS one as well as the damage of nanostructures. Herein, we demonstrate a new approach to create TiO2(B)/carbon core/shell nanotubes (C@TBNTs) using a long-chain silane polymethylhydrosiloxane (PMHS) to bind the TBNTs by forming Si-O-Ti bonds. The key feature of this work is that the introduction of PMHS onto TBNTs can afford TBNTs with very high thermal stability at higher than 700 °C and inhibit the phase transformation from TiO2(B) to anatase. Such a high thermal property of PMHS-TBNTs makes them easily coated with highly graphitic carbon shell via CVD process at 700 °C. The as-prepared C@TBNTs deliver outstanding rate capability and electrochemical stability, i.e., reversible capacity above 250 mAh g(-1) at 10 C and a high specific capacity of 479.2 mAh g(-1) after 1000 cycles at 1 C. As far as we know, the LIS performance of our sample is the highest among the previously reported TiO2(B) anode materials.


Scientific Reports | 2016

Nb2O5-γ-Al2O3 nanofibers as heterogeneous catalysts for efficient conversion of glucose to 5-hydroxymethylfurfural.

Huanfeng Jiao; Xiaoliang Zhao; Chunxiao Lv; Yijun Wang; Dongjiang Yang; Zhenhuan Li; Xiangdong Yao

One-dimensional γ-Al2O3 nanofibers were modified with Nb2O5 to be used as an efficient heterogeneous catalyst to catalyze biomass into 5-hydroxymethylfurfural (5-HMF). At low Nb2O5 loading, the niobia species were well dispersed on γ-Al2O3 nanofiber through Nb–O–Al bridge bonds. The interaction between Nb2O5 precursor and γ-Al2O3 nanofiber results in the niobia species with strong Lewis acid sites and intensive Brønsted acid sites, which made 5-HMF yield from glucose to reach the maximum 55.9~59.0% over Nb2O5-γ-Al2O3 nanofiber with a loading of 0.5~1 wt% Nb2O5 at 150 °C for 4 h in dimethyl sulfoxide. However, increasing Nb2O5 loading could lead to the formation of two-dimensional polymerized niobia species, three-dimensional polymerized niobia species and crystallization, which significantly influenced the distribution and quantity of the Lewis acid sites and Brönst acid sites over Nb2O5-γ-Al2O3 nanofiber. Lewis acid site Nbδ+ played a key role on the isomerization of glucose to fructose, while Brønsted acid sites are more active for the dehydration of generated fructose to 5-HMF. In addition, the heterogeneous Nb2O5-γ-Al2O3 nanofiber catalyst with suitable ratio of Lewis acid to Brönsted sites should display an more excellent catalytic performance in the conversion of glucose to 5-HMF.


Small | 2018

Sub-1.5 nm Ultrathin CoP Nanosheet Aerogel: Efficient Electrocatalyst for Hydrogen Evolution Reaction at All pH Values

Hui Li; Xiaoliang Zhao; Hongli Liu; Shuai Chen; Xianfeng Yang; Chunxiao Lv; Huawei Zhang; Xilin She; Dongjiang Yang

Transition metal phosphides (TMPs) are certified high performance electrocatalysts for the hydrogen evolution reaction (HER). The ultrathin 2D structure of TMPs can offer abundant adsorption sites to boost HER performance. Herein, an ice-templating strategy is developed to prepare CoP aerogels composed of 2D ultrathin CoP nanosheets (<1.5 nm) using sustainable alginate biomass (seaweed extract) as the precursor. The highly porous aerogel structure can not only deliver facile mass transfer, but also prevent aggregation of the nanosheets into layered structures. As expected, the obtained CoP nanosheet aerogels exhibit remarkable stability and excellent electrocatalytic HER performance at all pH values. For instance, the sample CoP-400 presents a low overpotential of 113, 154, and 161 mV versus RHE at a current density of 10 mA cm-2 in 0.5 m H2SO4, 1 m KOH, and 1 m phosphate buffer solution, respectively. In addition, CoP-400 displays low Tafel slopes at all pH values due to the interconnected highly porous structure of the aerogel, indicating that the sample can provide low-resistance channels for mass transport. Density functional theory calculations reveal that P-top and Co bridge on (011) facet of CoP are more favorable sites during the process of HER in acid and alkaline solutions, respectively.


Sensors and Actuators B-chemical | 2012

Carbon-nanotube-modified glassy carbon electrode for simultaneous determination of dopamine, ascorbic acid and uric acid: The effect of functional groups

Huaqing Bi; Yanhui Li; Shufeng Liu; Peizhi Guo; Zhongbin Wei; Chunxiao Lv; Jizhen Zhang; X. S. Zhao


Advanced Materials Interfaces | 2018

Reverse Microemulsion‐Assisted Synthesis of NiCo2S4 Nanoflakes Supported on Nickel Foam for Electrochemical Overall Water Splitting

Jing Yu; Chunxiao Lv; Lu Zhao; Lixue Zhang; Zonghua Wang; Qingyun Liu

Collaboration


Dive into the Chunxiao Lv's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xianfeng Yang

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lu Shang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shuai Chen

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge