Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chunxiao Yang is active.

Publication


Featured researches published by Chunxiao Yang.


Biochemical and Biophysical Research Communications | 2009

Cholinergic mechanism involved in the nociceptive modulation of dentate gyrus

Run-sheng Jiao; Chunxiao Yang; Ying Zhang; Man-Ying Xu; Xiaofang Yang

Acetylcholine (ACh) causes a wide variety of anti-nociceptive effects. The dentate gyrus (DG) region of the hippocampal formation (HF) has been demonstrated to be involved in nociceptive perception. However, the mechanisms underlying this anti-nociceptive role have not yet been elucidated in the cholinergic pain-related neurons of DG. The electrical activities of pain-related neurons of DG were recorded by a glass microelectrode. Two kinds of pain-related neurons were found: pain-excited neurons (PEN) and pain-inhibited neurons (PIN). The experimental protocol involved intra-DG administration of muscarinic cholinergic receptor (mAChR) agonist or antagonist. Intra-DG microinjection of 1 microl of ACh (0.2 microg/microl) or 1 microl of pilocarpine (0.4 microg/microl) decreased the discharge frequency of PEN and prolonged firing latency, but increased the discharge frequency of PIN and shortened PIN inhibitory duration (ID). Intra-DG administration of 1 microl of atropine (1.0 microg/microl) showed exactly the opposite effects. According to the above experimental results, we can presume that cholinergic pain-related neurons in DG are involved in the modulation of the nociceptive response by affecting the discharge of PEN and PIN.


Neuroscience Letters | 2010

Noradrenergic mechanism involved in the nociceptive modulation of nociceptive-related neurons in the caudate putamen

Guang-wen Zhang; Chunxiao Yang; Duo Zhang; He-ren Gao; Ying Zhang; Run-sheng Jiao; Hui Zhang; Yu Liang; Man-Ying Xu

Norepinephrine (NE) participates in pain modulation of the central nervous system. The caudate putamen (CPu) is one region of the basal ganglia that has been demonstrated to be involved in nociceptive perception. Our previous work has shown that microinjection of different doses of norepinephrine into the CPu produces opposing effects in the tail-flick latency (TFL) of rats. However, the mechanism of action of NE on the pain-related neurons in the CPu remains unclear. The present study examined the effects of NE and the alpha-adrenoceptor antagonist phentolamine on the pain-evoked response of pain-excitation neurons (PENs) and pain-inhibition neurons (PINs) in the CPu of rats. Trains of electric impulses were used for noxious stimulation, and were applied to the sciatic nerve. The electrical activities of pain-related neurons in the CPu were recorded by a glass microelectrode. The results revealed that intra-CPu microinjection of NE (8microg/2microl) increased evoked firing frequency of PEN and shortened the firing latency, but decreased the evoked firing frequency of PIN and prolonged the inhibitory duration (ID). Intra-CPu administration of phentolamine (4microg/2microl) showed the opposite effects. The above results suggest that NE in the CPu modulates nociception by affecting the baseline firing rates of PENs and PINs.


Biochemical and Biophysical Research Communications | 2008

Morphine dependence changes the role of droperidol on pain-related electric activities in caudate nucleus.

Ying Zhang; Chunxiao Yang; Xianzhang Xu; Run-sheng Jiao; Hongbo Jin; Yanhong Lv; Huike Yang; Man-Ying Xu

Droperidol causes the blockage of the dopamine receptors in the central nervous system that are involved in pain transmission. However, the mechanism of action of droperidol in pain-related neurons is not clear, and it is still unknown whether opioids are involved in the modulation of this processing. The present study examines the effect of droperidol on the pain-evoked response of pain-excitation neurons (PENs) and pain-inhibition neurons (PINs) in the caudate nucleus (Cd) of rats. The trains of electric impulses applied to the sciatic nerve were used as noxious stimulation. Our results revealed that droperidol decreased the frequency of PEN discharge, and increased the frequency PIN discharge evoked by the noxious stimulation in the Cd of normal rats, while administration of droperidol to morphine-dependent rats produced the opposite response. Those demonstrated that droperidol is involved in the modulation of nociceptive information transmission in Cd, and there were completely opposite responses to painful stimulation between normal and morphine-dependent rats after administration of droperidol.


Neuroscience Letters | 2010

Microinjection of different doses of norepinephrine into the caudate putamen produces opposing effects in rats.

Guang-wen Zhang; Chunxiao Yang; He-ren Gao; Duo Zhang; Ying Zhang; Run-sheng Jiao; Hui Zhang; Yu Liang; Man-Ying Xu

It has been proven that norepinephrine (NE) regulates antinociception through its action on alpha-adrenoceptors located in brain nuclei, spinal cord, and peripheral organs. However, the supraspinal mechanism of noradrenergic pain modulation is controversial. The present study was aimed at investigating the nociceptive effects induced by injecting different doses of NE and phentolamine into the caudate putamen (CPU) of rats. The thermal pain threshold of the rats was measured by performing a tail-flick test. The tail-flick latency (TFL) was measured at 2-60 min after microinjection of the drugs. Our results revealed that the thermal pain threshold increased (long TFL) after the administration of a low dose of NE (2 microg/2 microl) and decreased (short TFL) after injection of a high dose of NE (8 microg/2 microl). In contrast, the pain threshold decreased after the administration of a low dose of phentolamine (1 microg/2 microl), while it increased after injection of a high dose of phentolamine (4 microg/2 microl). These results indicated that the injection of different doses of NE in the CPU of the rats produced opposite effects on the pain threshold, as determined by the tail-flick tests.


Neurochemical Research | 2012

Dopamine affects the change of pain-related electrical activity induced by morphine dependence.

Ying Zhang; Fengmin Zhang; Chunxiao Yang; Hongbo Jin; Yongbin Yang; Man-Ying Xu

Morphine is among the most effective analgesics. However, many evidences suggest that, besides the well-know analgesic activity, repeated opioids treatment can induce some side effects such as dependence, hyperalgesia and tolerance. The mechanism of noxious information transmission in the central nervous system after dependence is not clear. An important neurotransmitter, dopamine (DA) participates not only in the process of opioid dependence but also in pain modulation in the central nervous system. In the present study we observed changes of electrical activities of pain-excitation neurons (PENs) and pain-inhibition neurons (PINs) in the caudate nucleus (Cd) following the development of morphine dependence. We also observed the role of DA on these changes. Our results revealed that both the latency of PEN discharges and the inhibitory duration of PIN discharges decreased, and the net increased values of PEN and PIN discharges increased in the Cd of morphine dependent rats. Those demonstrated that electrical activities of both PENs and PINs increased in morphine dependent rats. DA inhibited the electrical activities of PENs and enhanced those of PINs in morphine dependent rats.


Biochemical and Biophysical Research Communications | 2010

MK-801 changes the role of glutamic acid on modulation of algesia in nucleus accumbens.

Tie-feng Shi; Chunxiao Yang; Dong-Xiao Yang; Run-sheng Jiao; Guang-wen Zhang; He-ren Gao; Duo Zhang; Man-Ying Xu

Dizocilpine maleate (MK-801) causes the blockage of the glutamic acid (Glu) receptors in the central nervous system that are involved in pain transmission. However, the mechanism of action of MK-801 in pain-related neurons is not clear, and it is still unknown whether Glu is involved in the modulation of this processing. This study examines the effect of MK-801, Glu on the pain-evoked response of pain-excitation neurons (PENs) and pain-inhibition neurons (PINs) in the nucleus accumbens (NAc) of rats. The trains of electric impulses applied to the sciatic nerve were used as noxious stimulation. The electrical activities of PENs or PINs in NAc were recorded by a glass microelectrode. Our results revealed that the lateral ventricle injection of Glu increased the discharged frequency and shortened the discharged latency of PEN, and decreased the discharged frequency and prolonged the discharged inhibitory duration (ID) of PIN in NAc of rats evoked by the noxious stimulation, while intra-NAc administration of MK-801 produced the opposite response. On the basis of above findings we can deduce that Glu, MK-801 and N-methyl-D-aspartate (NMDA) receptor are involved in the modulation of nociceptive information transmission in NAc.


Neuroscience Letters | 2012

Modulatory role of glutamic acid on the electrical activities of pain-related neurons in the hippocampal CA3 region

Xu Ma; Tie-feng Shi; Min Zhang; Xiao-Yu Lu; Chunxiao Yang; Dan Zhu; Dong-xiao Shi; Yue Yang; Chun-lei Wang; Shuang Zhang; Man-Ying Xu

Glutamic acid (Glu) participates in pain modulation of the central nervous system. The CA3 region of the hippocampal formation has been suggested to be involved in nociceptive perception. However, it is unknown whether Glu could modulate the electrical activities of pain-related neurons in the hippocampal CA3 region. The present study aimed to determine the effects of Glu and its receptor antagonist MK-801 in the pain-evoked response of both pain-excited neurons (PENs) and pain-inhibited neurons (PINs) in the hippocampal CA3 region of normal rats. We used a train of electric impulses applied to the sciatic nerve as noxious stimulation. The electrical activities of either PENs or PINs in the hippocampal CA3 region were recorded by a glass microelectrode. The results revealed that intra-CA3 region microinjection of Glu (0.5 μg/1 μl) increased the evoked firing frequency and shortened the firing latency of PEN, while decreased the evoked firing frequency and prolonged the inhibitory duration of PIN in the hippocampal CA3 region of rat evoked by the noxious stimulation. Intra-CA3 region administration of MK-801 (0.25 μg/1 μl) produced the opposite response. These results suggest that Glu and its receptors in hippocampal CA3 region are involved in the modulation of nociceptive information transmission by affecting the electric activities of PENs and PINs.


Neuromodulation | 2010

Cholecystokinin‐8 antagonizes electroacupuncture analgesia through its B receptor in the caudate nucleus

Chunxiao Yang; Tie-feng Shi; Qing‐Cheng Liang; Bao‐Feng Yang; Run-sheng Jiao; Hui Zhang; Ying Zhang; Man-Ying Xu

Objectives:  The analgesic effect of electroacupuncture (EA) stimulation has been proved. However, its mechanism of action is not clear. It has been well‐known that cholecystokinin‐8 (CCK‐8) is a neuropeptide which is mainly related to the mediation of pain. The caudate nucleus was selected to determine if the release of CCK and the neural activity in this nucleus were involved in producing EA analgesia.


Neuroscience Letters | 2014

Noradrenergic mechanism involved in the nociceptive modulation of hippocampal CA3 region of normal rats

Hua Jin; Yueqiu Teng; Xuexin Zhang; Chunxiao Yang; Man-Ying Xu; Li-Zhuang Yang

Norepinephrine (NE) is an important neurotransmitter in the brain, and regulates antinociception. However, the mechanism of action of NE on pain-related neurons in the hippocampal CA3 region is not clear. This study examines the effects of NE, phentolamine on the electrical activities of pain-excited neurons (PENs) and pain-inhibited neurons (PINs) in the hippocampal CA3 region of rats. Trains of electric impulses applied to the right sciatic nerve were used as noxious stimulation. The electrical activities of PENs or PINs in the hippocampal CA3 region were recorded by using a glass microelectrode. Our results revealed that, in the hippocampal CA3 region, the intra-CA3 region microinjection of NE decreased the pain-evoked discharged frequency and prolonged the discharged latency of PEN, and increased the pain-evoked discharged frequency and shortened discharged inhibitory duration (ID) of PIN, exhibiting the specific analgesic effect of NE. While intra-CA3 region microinjection of phentolamine produced the opposite response. It implies that phentolamine can block the effect of endogenous NE to cause the enhanced response of PEN and PIN to noxious stimulation. On the basis of above findings we can deduce that NE, phentolamine and alpha-adrenoceptor are involved in the modulation of nociceptive information transmission in the hippocampal CA3 region.


Neuroreport | 2014

Acetylcholine plays an antinociceptive role by modulating pain-induced discharges of pain-related neurons in the caudate putamen of rats.

Chun-Mei Li; Da-Ming Zhang; Chunxiao Yang; Xu Ma; He-ren Gao; Duo Zhang; Man-Ying Xu

The caudate putamen (CPu) has been suggested to be involved in nociceptive modulation. Some neurotransmitters, including acetylcholine (ACh), participate in pain modulation in the central nervous system. However, the active mechanism of ACh on the pain-related neurons in the CPu remains unclear. This study aimed to investigate the effects of the cholinergic agonists ACh and pilocarpine and the muscarinic ACh receptor antagonist atropine on the pain-induced response of pain-related neurons in the CPu of Wistar rats. Trains of electrical impulses applied to the sciatic nerve of rat were used as the noxious stimulus. The electrical activities of pain-excited neurons (PENs) or pain-inhibited neurons (PINs) in the CPu were recorded by a glass microelectrode. Our results showed that an intra-CPu injection of 4 μg/2 μl ACh or pilocarpine decreased and increased the pain-induced discharge frequency in the PENs and PINs, respectively. Intra-CPu administration of 1 μg/2 μl atropine produced the opposite effect on these neurons. These findings indicate that ACh may play an analgesic role by affecting the electric activities of PENs and PINs, and the muscarinic pathway may be involved in the modulation of pain perception in the CPu.

Collaboration


Dive into the Chunxiao Yang's collaboration.

Top Co-Authors

Avatar

Man-Ying Xu

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Duo Zhang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Run-sheng Jiao

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

He-ren Gao

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Ying Zhang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Guang-wen Zhang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Dong-Xiao Yang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Tie-feng Shi

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Hui Zhang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Hongbo Jin

Harbin Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge