Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chunyan Ji is active.

Publication


Featured researches published by Chunyan Ji.


Journal of Hematology & Oncology | 2013

Notch1 is required for hypoxia-induced proliferation, invasion and chemoresistance of T-cell acute lymphoblastic leukemia cells.

Jie Zou; Peng Li; Fei Lu; Na Liu; Jianjian Dai; Jingjing Ye; Xun Qu; Xiulian Sun; Daoxin Ma; Jino Park; Chunyan Ji

BackgroundNotch1 is a potent regulator known to play an oncogenic role in many malignancies including T-cell acute lymphoblastic leukemia (T-ALL). Tumor hypoxia and increased hypoxia-inducible factor-1α (HIF-1α) activity can act as major stimuli for tumor aggressiveness and progression. Although hypoxia-mediated activation of the Notch1 pathway plays an important role in tumor cell survival and invasiveness, the interaction between HIF-1α and Notch1 has not yet been identified in T-ALL. This study was designed to investigate whether hypoxia activates Notch1 signalling through HIF-1α stabilization and to determine the contribution of hypoxia and HIF-1α to proliferation, invasion and chemoresistance in T-ALL.MethodsT-ALL cell lines (Jurkat, Sup-T1) transfected with HIF-1α or Notch1 small interference RNA (siRNA) were incubated in normoxic or hypoxic conditions. Their potential for proliferation and invasion was measured by WST-8 and transwell assays. Flow cytometry was used to detect apoptosis and assess cell cycle regulation. Expression and regulation of components of the HIF-1α and Notch1 pathways and of genes related to proliferation, invasion and apoptosis were assessed by quantitative real-time PCR or Western blot.ResultsHypoxia potentiated Notch1 signalling via stabilization and activation of the transcription factor HIF-1α. Hypoxia/HIF-1α-activated Notch1 signalling altered expression of cell cycle regulatory proteins and accelerated cell proliferation. Hypoxia-induced Notch1 activation increased the expression of matrix metalloproteinase-2 (MMP2) and MMP9, which increased invasiveness. Of greater clinical significance, knockdown of Notch1 prevented the protective effect of hypoxia/HIF-1α against dexamethasone-induced apoptosis. This sensitization correlated with losing the effect of hypoxia/HIF-1α on Bcl-2 and Bcl-xL expression.ConclusionsNotch1 signalling is required for hypoxia/HIF-1α-induced proliferation, invasion and chemoresistance in T-ALL. Pharmacological inhibitors of HIF-1α or Notch1 signalling may be attractive interventions for T-ALL treatment.


Carcinogenesis | 2013

Cross-talk between leukemic and endothelial cells promotes angiogenesis by VEGF activation of the Notch/Dll4 pathway

Jingru Zhang; Jingjing Ye; Daoxin Ma; Na Liu; Hao Wu; Shuang Yu; Xiulian Sun; William Tse; Chunyan Ji

Angiogenesis is suggested to be important for leukemogenesis and chemosensitivity in acute myeloid leukemia (AML). The vascular endothelial growth factor (VEGF) and Notch/Dll4 pathways have been identified as critical in the regulation of embryonic vascular development and tumor angiogenesis. However, the potential role of the Notch/Dll4 pathway in leukemia-endothelium cross-talk and its functional link with VEGF remains obscure. This study assessed the expression of VEGF and Notch/Dll4 pathway molecules in primary AML and investigated their biological function in the coculture of endothelial cells with AML cells. The results demonstrated that bone marrow vascularity in the newly diagnosed AML patients was increased and correlated with high VEGF and Dll4 expression. Patients with untreated AML expressed higher levels of VEGFR2, Notch1, Dll4 and Hes1 than healthy controls. Moreover, the activation of the Notch/Dll4 pathway is associated with poor prognosis in AML. In addition, AML cells were shown to increase endothelial cell proliferation in Transwell coculture. This was associated with concomitant activation of the Notch/Dll4 pathway and upregulation of its downstream genes, such as matrix metalloproteinases, resulting in the enhancement of endothelial cell migration and tube formation. Our study also showed that upregulation of Dll4 expression in AML cells by cDNA transfection suppressed VEGF-induced endothelial cell proliferation and angiogenesis in direct contact coculture. These results elucidate a novel mechanism by which the interplay between AML and endothelial cells promotes angiogenesis through the Notch/Dll4 pathway. Modulation of this pathway may, therefore, hold promise as a novel antiangiogenic strategy for the treatment of AML.


British Journal of Haematology | 2011

MIR29B regulates expression of MLLT11 (AF1Q), an MLL fusion partner, and low MIR29B expression associates with adverse cytogenetics and poor overall survival in AML

Yin Xiong; Zejuan Li; Min Ji; Aik Choon Tan; Judson Bemis; Jove Victor Tse; Gang Huang; Jino Park; Chunyan Ji; Jianjun Chen; Lynne T. Bemis; Kevin D. Bunting; William Tse

MLLT11, an MLL fusion partner, is a poor prognostic biomarker for paediatric acute myeloid leukaemia (AML), adult normal cytogenetics AML, and adult myelodysplastic syndrome. MLLT11 is highly regulated during haematopoietic progenitor differentiation and development but its regulatory mechanisms have not been defined. In this study, we demonstrate by transfection experiments that MIR29B directly regulates MLLT11 expression in vitro. MIR29B expression level was also inversely related to MLLT11 expression in a cohort of 56 AML patients (P < 0·05). AML patients with low MIR29B/elevated MLLT11 expression had poor overall survival (P = 0·038). Therefore, MIR29B may be a potential prognostic biomarker for AML patients.


PLOS ONE | 2014

Tumor Suppressor DYRK1A Effects on Proliferation and Chemoresistance of AML Cells by Downregulating c-Myc

Qiang Liu; Na Liu; Shaolei Zang; Heng Liu; Pin Wang; Chunyan Ji; Xiulian Sun

Acute myeloid leukemia (AML), caused by abnormal proliferation and accumulation of hematopoietic progenitor cells, is one of the most common malignancies in adults. We reported here DYRK1A expression level was reduced in the bone marrow of adult AML patients, comparing to normal controls. Overexpression of DYRK1A inhibited the proliferation of AML cell lines by increasing the proportion of cells undergoing G0/G1 phase. We reasoned that the proliferative inhibition was due to downregulation of c-Myc by DYRK1A, through mediating its degradation. Moreover, overexpression of c-Myc markedly reversed AML cell growth inhibition induced by DYRK1A. DYRK1A also had significantly lower expression in relapsed/refractory AML patients, comparing to newly-diagnosed AML patients, which indicated the role of DYRK1A in chemoresistance of AML. Our study provided functional evidences for DYRK1A as a potential tumor suppressor in AML.


British Journal of Haematology | 2009

Simultaneous targeting of MCL1 and ABCB1 as a novel strategy to overcome drug resistance in human leukaemia

Min Ji; Jie Li; Haiqing Yu; Daoxin Ma; Jingjing Ye; Xiulian Sun; Chunyan Ji

Drug resistance is a major obstacle to chemotherapy success in leukaemia. Although ABCB1 (MDR1) overexpression represents a critical mechanism of drug resistance, modulation of ABCB1 shows unsatisfactory clinical outcome. Recent studies showed that MCL1 was upregulated in numerous haematological and solid tumour malignancies. The present study found that patients with newly diagnosed or relapsed/refractory leukaemia expressed higher MCL1 levels than patients that were in complete remission. We demonstrated that overexpression of MCL1 decreased sensitivity of human leukaemia cell lines to cytotoxic drugs and inhibited drug‐induced apoptosis. Specific downregulation of MCL1 via RNA interference sensitized multidrug resistant leukaemia cells towards chemotherapy and induced apoptosis. Our study also demonstrated that MCL1 and ABCB1 mediated drug resistance through different mechanisms and the depletion of both MCL1 and ABCB1 showed an additive effect in reversing drug resistance and promoting drug‐induced apoptosis. Thus, this study documented an important role of MCL1 in drug resistance and apoptosis. Simultaneous targeting of MCL1 and ABCB1 could be a novel approach to overcome drug resistance in leukaemia.


Clinica Chimica Acta | 2014

The expression of VEGF and Dll4/Notch pathway molecules in ovarian cancer

Hongchun Wang; Xiangnan Huang; Jingru Zhang; Na Shao; L ong Chen; Daoxin Ma; Chunyan Ji

BACKGROUND VEGF and Dll4/Notch pathways play important roles in tumor angiogenesis. The purpose of this study is to investigate the expression of these two pathway molecules in ovarian cancer and their possible relationships in carcinogenesis. METHODS Twenty-eight specimens of human ovarian carcinoma, 18 of benign ovarian and 20 of healthy ovarian tissues were subjected to immunohistochemical analysis for VEGF, VEGFR1, and VEGFR2, Dll4, Notch1, and Notch3 expression. Microvessel density (MVD) was evaluated by counting the number of CD34-stained microvessels in each pathologic specimen. RESULTS The expression of VEGF, VEGFR1, Dll4, Notch1, or Notch3 in ovarian tumor tissues was higher than that in normal ovary tissues as well as that in benign ovarian tumor tissues (P<0.05). In the tumor tissues, Dll4 was positively correlated with VEGFR1 expression and Notch1 was positively associated with VEGFR2 and MVD. Moreover, VEGFR2 expression was positively associated with ascites and distant metastasis (R=0.401, P=0.034). CONCLUSIONS Dll4 represents a potential biomarker and therapeutic target for ovarian angiogenesis. VEGFR2 is significantly related to ovarian metastasis and invasion. Therefore testing the key molecules of these two pathways expression may have some diagnostic and prognostic value for ovarian cancer.


Journal of Molecular Medicine | 2014

Inactivation of FoxM1 transcription factor contributes to curcumin-induced inhibition of survival, angiogenesis, and chemosensitivity in acute myeloid leukemia cells

Jingru Zhang; Fei Lu; Ting Lu; Wenhao Dong; Peng Li; Na Liu; Daoxin Ma; Chunyan Ji

Aberrant expression of forkhead box protein M1 (FoxM1) contributes to carcinogenesis in human cancers, including acute myeloid leukemia (AML), suggesting that the discovery of specific agents targeting FoxM1 would be extremely valuable for the treatment of AML. Curcumin, a naturally occurring phenolic compound, is suggested to possess anti-leukemic activity; however, the underlying mechanism has not been well elucidated. In this study, we found that curcumin inhibited cell survival accompanied by induction of G2/M cell cycle arrest and apoptosis in HL60, Kasumi, NB4, and KG1 cells. This was associated with concomitant attenuation of FoxM1 and its downstream genes, such as cyclin B1, cyclin-dependent kinase (CDK) 2, S-phase kinase-associated protein 2, Cdc25B, survivin, Bcl-2, matrix metalloproteinase (MMP)-2, MMP-9, and vascular endothelial growth factor (VEGF), as well as the reduction of the angiogenic effect of AML cells. We also found that specific downregulation of FoxM1 by siRNA prior to curcumin treatment resulted in enhanced cell survival inhibition and induction of apoptosis. Accordingly, FoxM1 siRNA increased the susceptibility of AML cells to doxorubicin-induced apoptosis. More importantly, curcumin suppressed FoxM1 expression, selectively inhibited cell survival as well as the combination of curcumin and doxorubicin exhibited a more inhibitory effect in primary CD34+ AML cells, while showing limited lethality in normal CD34+ hematopoietic progenitors. These results identify a novel role for FoxM1 in mediating the biological effects of curcumin in human AML cells. Our data provide the first evidence that curcumin together with chemotherapy or FoxM1 targeting agents may be effective strategies for the treatment of AML.Key messageCurcumin inhibited AML cell survival and angiogenesis and induced chemosensitivity.Aberrant expression of FoxM1 induces AML cell survival and chemoresistance.Inactivation of FoxM1 contributes to curcumin-induced anti-leukemic effects.Curcumin together with FoxM1 targeting agents may be effective for AML therapy.


Oncotarget | 2016

MiR-424 and miR-27a increase TRAIL sensitivity of acute myeloid leukemia by targeting PLAG1

Yan-ping Sun; Fei Lu; Xiaoyu Han; Min Ji; Ying Zhou; Amin Zhang; Hongchun Wang; Daoxin Ma; Chunyan Ji

Although microRNAs have been elaborated to participate in various physiological and pathological processes, their functions in TRAIL resistance of acute myeloid leukemia (AML) remain obscure. In this study, we detected relatively lower expression levels of miR-424&27a in TRAIL-resistant and semi-resistant AML cell lines as well as newly diagnosed patient samples. Overexpression of miR-424&27a, by targeting the 3′UTR of PLAG1, enhanced TRAIL sensitivity in AML cells. Correspondingly, knockdown of PLAG1 sensitized AML cells to TRAIL-induced apoptosis and proliferation inhibition. We further found that PLAG1 as a transcription factor could reinforce Bcl2 promoter activity, causing its upregulation at the mRNA level. Both downregulated PLAG1 and elevated expression of miR-424&27a led to Bcl2 downregulation and augmented cleavage of Caspase8, Caspase3 and PARP in the presence of TRAIL. Restoration of Bcl2 could eliminate their effects on AML TRAIL sensitization. Overall, we propose that miR-424&27a and/or PLAG1 might serve as novel therapeutic targets in AML TRAIL therapy.


Experimental Cell Research | 2014

Degradation of AF1Q by chaperone-mediated autophagy.

Peng Li; Min Ji; Fei Lu; Jingru Zhang; Huanjie Li; Taixing Cui; Xing Li Wang; Dongqi Tang; Chunyan Ji

AF1Q, a mixed lineage leukemia gene fusion partner, is identified as a poor prognostic biomarker for pediatric acute myeloid leukemia (AML), adult AML with normal cytogenetic and adult myelodysplastic syndrome. AF1Q is highly regulated during hematopoietic progenitor differentiation and development but its regulatory mechanism has not been defined clearly. In the present study, we used pharmacological and genetic approaches to influence chaperone-mediated autophagy (CMA) and explored the degradation mechanism of AF1Q. Pharmacological inhibitors of lysosomal degradation, such as chloroquine, increased AF1Q levels, whereas activators of CMA, including 6-aminonicotinamide and nutrient starvation, decreased AF1Q levels. AF1Q interacts with HSPA8 and LAMP-2A, which are core components of the CMA machinery. Knockdown of HSPA8 or LAMP-2A increased AF1Q protein levels, whereas overexpression showed the opposite effect. Using an amino acid deletion AF1Q mutation plasmid, we identified that AF1Q had a KFERQ-like motif which was recognized by HSPA8 for CMA-dependent proteolysis. In conclusion, we demonstrate for the first time that AF1Q can be degraded in lysosomes by CMA.


Histology and Histopathology | 2013

Aberrant expression and association of VEGF and Dll4/Notch pathway molecules under hypoxia in patients with lung cancer.

Shuang Yu; Jianhua Sun; Jingru Zhang; Xingfang Xu; Hong Li; Baozhong Shan; Tian Tian; Hongchun Wang; Daoxin Ma; Chunyan Ji

Tumor angiogenesis plays important roles in the pathogenesis and prognosis of lung cancer. Both vascular endothelial growth factor (VEGF) and Dll4/Notch pathways are critical for angiogenesis, whereas their relationship under hypoxia in lung cancer remains unknown. Thus, in the present study, we evaluated the expression of VEGF and Dll4/Notch signaling molecules, and assessed their association with the microvessel density (CD31) and hypoxia (HIF1a) in lung cancer and normal lung tissues using immunohistochemical and Real-time RT-PCR techniques. Then, we investigated the biological function of Dll4 by transfecting Dll4 into HUVECs. In lung cancer tissues, Notch pathway molecules (HES1) and VEGF pathway molecules (VEGFR1 and VEGFR2) were significantly up-regulated, while the ratio of VEGFR1/VEGFR2 was decreased. CD31 and HIF1a were also found to be elevated in lung cancer. VEGFR1 was negatively correlated with Notch1 while positively correlated with Dll4. CD31 was positively correlated with HIF1a but negatively correlated with VEGFR1. Moreover, HIF1a was nearly positively correlated with HES1 in lung cancer tissues. After transfection, Dll4, Notch1 and VEGFR1 were up-regulated while VEGF and VEGFR2 were down-regulated in Dll4-transfected HUVECs compared with controls. Also, our findings suggest that the expression of VEGF and VEGFR2 increased gradually with the disease progression of lung cancer. In summary, VEGF and Notch signaling pathway molecules were overexpressed in lung cancer, which positively correlates with hypoxia (HIF1a) and angiogenesis (CD31). There might be a negative feedback loop between VEGF and Dll4/Notch signaling pathway in lung tumor angiogenesis.

Collaboration


Dive into the Chunyan Ji's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Lu

Shandong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Ji

Shandong University

View shared research outputs
Top Co-Authors

Avatar

Na Liu

Shandong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge