Chunyan Tan
Graduate School USA
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chunyan Tan.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Feng Zhu; Chu Qin; Lin Tao; Xin Liu; Zhe Shi; Xiaohua Ma; Jia Jia; Ying Tan; Cheng Cui; Jinshun Lin; Chunyan Tan; Yuyang Jiang; Yu Zong Chen
Many drugs are nature derived. Low drug productivity has renewed interest in natural products as drug-discovery sources. Nature-derived drugs are composed of dozens of molecular scaffolds generated by specific secondary-metabolite gene clusters in selected species. It can be hypothesized that drug-like structures probably are distributed in selective groups of species. We compared the species origins of 939 approved and 369 clinical-trial drugs with those of 119 preclinical drugs and 19,721 bioactive natural products. In contrast to the scattered distribution of bioactive natural products, these drugs are clustered into 144 of the 6,763 known species families in nature, with 80% of the approved drugs and 67% of the clinical-trial drugs concentrated in 17 and 30 drug-prolific families, respectively. Four lines of evidence from historical drug data, 13,548 marine natural products, 767 medicinal plants, and 19,721 bioactive natural products suggest that drugs are derived mostly from preexisting drug-productive families. Drug-productive clusters expand slowly by conventional technologies. The lack of drugs outside drug-productive families is not necessarily the result of under-exploration or late exploration by conventional technologies. New technologies that explore cryptic gene clusters, pathways, interspecies crosstalk, and high-throughput fermentation enable the discovery of novel natural products. The potential impact of these technologies on drug productivity and on the distribution patterns of drug-productive families is yet to be revealed.
Pharmaceutical Research | 2010
Xiao Hua Ma; Zhe Shi; Chunyan Tan; Yuyang Jiang; Mei Lin Go; Boon Chuan Low; Yu Zong Chen
Multi-target drugs against selective multiple targets improve therapeutic efficacy, safety and resistance profiles by collective regulations of a primary therapeutic target together with compensatory elements and resistance activities. Efforts have been made to employ in-silico methods for facilitating the search and design of selective multi-target agents. These methods have shown promising potential in facilitating drug discovery directed at selective multiple targets.
Bioorganic & Medicinal Chemistry | 2011
Yunqi Li; Chunyan Tan; Chunmei Gao; Cunlong Zhang; Xudong Luan; Xiaowu Chen; Hongxia Liu; Yu Zong Chen; Yuyang Jiang
Multi-target EGFR, VEGFR-2 and PDGFR inhibitors are highly useful anticancer agents with improved therapeutic efficacies. In this work, we used two virtual screening methods, support vector machines (SVM) and molecular docking, to identify a novel series of benzimidazole derivatives, 2-aryl benzimidazole compounds, as multi-target EGFR, VEGFR-2 and PDGFR inhibitors. 2-Aryl benzimidazole compounds were synthesized and their biological activities against a tumor cell line HepG-2 and specific kinases were evaluated. Among these compounds, compounds 5a and 5e exhibited high cytotoxicity against HepG-2 cells with IC₅₀ values at ∼2 μM. Further kinase assay study showed that compound 5a have good EGFR inhibitory activity and moderate VEGFR-2 and PDGFR inhibitory activities, while 5e have moderate EGFR inhibitory activity and slightly weaker VEGFR-2 and PDGFR inhibitory activities. Molecular docking analysis suggested that compound 5a more tightly interacts with EGFR and PDGFR than compound 5e. Our study discovered a novel series of benzimidazole derivatives as multi-target EGFR, VEGFR-2 and PDGFR kinases inhibitors.
Bioorganic & Medicinal Chemistry | 2011
Xudong Luan; Chunmei Gao; Nannan Zhang; Yu Zong Chen; Qinsheng Sun; Chunyan Tan; Hongxia Liu; Yibao Jin; Yuyang Jiang
VEGFR-2 and Src kinases both play important roles in cancers. In certain cancers, Src works synergistically with VEGFR-2 to promote its activation. Development of multi-target drugs against VEGFR-2 and Src is of therapeutic advantage against these cancers. By using molecular docking and SVM virtual screening methods and based on subsequent synthesis and bioassay studies, we identified 9-aminoacridine derivatives with an acridine scaffold as potentially interesting novel dual VEGFR-2 and Src inhibitors. The acridine scaffold has been historically used for deriving topoisomerase inhibitors, but has not been found in existing VEGFR-2 inhibitors and Src inhibitors. A series of 21 acridine derivatives were synthesized and evaluated for their antiproliferative activities against K562, HepG-2, and MCF-7 cells. Some of these compounds showed better activities against K562 cells in vitro than imatinib. The structure-activity relationships (SAR) of these compounds were analyzed. One of the compounds (7r) showed low μM activity against K562 and HepG-2 cancer cell-lines, and inhibited VEGFR-2 and Src at inhibition rates of 44% and 8% at 50μM, respectively, without inhibition of topoisomerase. Moreover, 10μM compound 7r could reduce the levels of activated ERK1/2 in a time dependant manner, a downstream effector of both VEGFR-2 and Src. Our study suggested that acridine scaffold is a potentially interesting scaffold for developing novel multi-target kinase inhibitors such as VEGFR-2 and Src dual inhibitors.
Bioorganic & Medicinal Chemistry | 2013
Xuliang Lang; Lulu Li; Yu Zong Chen; Qinsheng Sun; Qin Wu; Feng Liu; Chunyan Tan; Hongxia Liu; Chunmei Gao; Yuyang Jiang
Acridine derivatives have been explored as DNA-binding anticancer agents. Some derivatives show undesired pharmacokinetic properties and new derivatives need to be explored. In this work, a series of novel acridine analogues were synthesized by modifying previously unexplored linkers between the acridine and benzene groups and their antiproliferative activity and the DNA-binding ability were evaluated. Among these derivatives, compound 5c demonstrated DNA-binding capability and topoisomerase I inhibitory activity. In K562 cell lines, 5c induced apoptosis through mitochondria-dependent intrinsic pathways. These data suggested that compound 5c and other acridine derivatives with modified linkers between the acridine and benzene groups might be potent DNA-binding agents.
Bioorganic & Medicinal Chemistry | 2008
Chunmei Gao; Yuyang Jiang; Chunyan Tan; Xuyu Zu; Huachen Liu; Derong Cao
A novel series of 10-benzyl-9(10H)-acridinones and 1-benzyl-4-piperidones were synthesized and tested for their in vitro antitumor activities against CCRF-CEM cells. Assay-based antiproliferative activity study using CCRF-CEM cell lines revealed that the acridone group and the substitution pattern on the benzene unit had significant effect on cytotoxicity of this series of compounds, among which 10-(3,5-dimethoxy)benzyl-9(10H)-acridinone (3b) was found to be the most active compound with IC(50) at about 0.7 microM. Compound 3b was also found to have antiproliferative activity against two other human leukemic cell lines K562 and HL60 using the MTT assay. The antitumor effect of 3b is believed to be due to the induction of apoptosis, which is further confirmed by PI (Propidium iodide) staining and Annexin V-FITC/PI staining assay using flow cytometry analysis.
ACS Applied Materials & Interfaces | 2015
Yi Wu; Ying Tan; Jiatao Wu; Shangying Chen; Yu Zong Chen; Xinwen Zhou; Yuyang Jiang; Chunyan Tan
Array-based sensing offers several advantages for detecting a series of analytes with common structures or properties. In this study, four anionic conjugated polyelectrolytes (CPEs) with a common poly(p-pheynylene ethynylene) (PPE) backbone and varying pendant ionic side chains were designed. The conjugation length, repeat unit pattern, and ionic side chain composition were the main factors affecting the fluorescence patterns of CPE polymers in response to the addition of different metal ions. Eight metal ions, including Pb(2+), Hg(2+), Fe(3+), Cr(3+), Cu(2+), Mn(2+), Ni(2+), and Co(2+), categorized as water contaminants by the Environmental Protection Agency, were selected as analytes in this study. Fluorescence intensity response patterns of the four-PPE sensor array toward each of the metal ions were recorded, analyzed, and transformed into canonical scores using linear discrimination analysis (LDA), which permitted clear differentiation between metal ions using both two-dimensional and three-dimensional graphs. In particular, the array could readily differentiate between eight toxic metal ions in separate aqueous solutions at 100 nM. Our four-PPE sensor array also provides a practical application to quantify Pb(2+) and Hg(2+) concentrations in blind samples within a specific concentration range.
European Journal of Medicinal Chemistry | 2011
Cunlong Zhang; Chunyan Tan; Xuyu Zu; Xin Zhai; Feng Liu; Bizhu Chu; Xiaohua Ma; Yu Zong Chen; Ping Gong; Yuyang Jiang
Based on the literature-reported compensatory effect of PI3K on Abl inhibition and the improved preclinical effect of drug combination of Abl and PI3K inhibitors, a series of compounds bearing novel scaffold of (S)-3-aminopyrrolidine was identified as Abl and PI3K dual inhibitors through support vector machine screening tool, which were subsequently synthesized and tested. Most compounds demonstrated promising cytoxicity against a CML leukemia cell-line K562 and moderate inhibition against Abl and PI3K kinases. These compounds induced no apoptosis in K562 cell-line, suggesting that their cytotoxic activities are unlikely duo to other known anti-CML mechanisms. Molecular docking study further showed that the compound 5k could bind with both Abl and PI3K, but the weaker binding with Abl compared to Imatinib is consistent with its low kinase inhibitory rates. These plus literature-reported evidences suggest that the promising cytotoxic effect of our novel compounds might be due to the collective effect of Abl and PI3K inhibition.
Bioorganic & Medicinal Chemistry | 2010
Chunmei Gao; Feng Liu; Xudong Luan; Chunyan Tan; Hongxia Liu; Yonghua Xie; Yibao Jin; Yuyang Jiang
A series of novel 9(10H)-acridinone derivatives with terminal amino substituents at C2 position on the acridinone ring were synthesized and studied for their antiproliferative activity and underlying mechanisms. These compounds demonstrated promising cytotoxicity to leukemia cells CCRF-CEM, displaying IC(50) values in the low micromolar range. Structure-activity relationships (SAR) indicated that the compound 6d bearing a pyrrolidine substituent and 8a with a methyl ammonium side chain displayed higher cytotoxicity to CCRF-CEM cells and also solid tumor cells A549, HepG2, and MCF7. Furthermore, the compounds 6d and 8a had strong binding activity to calf thymus DNA (ct DNA), as detected by UV absorption and fluorescence quenching assays, but limited inhibitory activity to human topoisomerase 1 (topo 1). Taken together, this study discovered a series of new synthetic 9(10H)-acridinone derivatives with potent DNA binding and anticancer activity.
Bioorganic & Medicinal Chemistry | 2015
Chunmei Gao; Bin Li; Bin Zhang; Qinsheng Sun; Lulu Li; Xi Li; Changjun Chen; Chunyan Tan; Hongxia Liu; Yuyang Jiang
The discovery of new effective DNA-targeted antitumor agent is needed because of their clinical significance. As acridines can intercalate into DNA and benzimidazoles have the ability to bind in the DNA minor groove, a series of novel benzimidazole acridine derivatives were designed and synthesized to be new DNA-targeted compounds. MTT assay indicated that most of the synthesized compounds displayed good antiproliferative activity, among which compound 8l demonstrated the highest activity against both K562 and HepG-2 cells. Further experiments showed that 8l displayed good DNA-binding capability and inhibited topoisomerase I activity. Moreover, compound 8l could induce apoptosis in K562 cell lines through mitochondrial pathway. These data suggested that compound 8l might be potential as new DNA-binding and apoptosis-inducing antitumor agents.