Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chunyao Tao is active.

Publication


Featured researches published by Chunyao Tao.


Nature Cell Biology | 2006

The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis

Fisun Hamaratoglu; Maria Willecke; Madhuri Kango-Singh; Riitta Nolo; Eric Hyun; Chunyao Tao; Hamed Jafar-Nejad; Georg Halder

Merlin, the protein product of the Neurofibromatosis type-2 gene, acts as a tumour suppressor in mice and humans. Merlin is an adaptor protein with a FERM domain and it is thought to transduce a growth-regulatory signal. However, the pathway through which Merlin acts as a tumour suppressor is poorly understood. Merlin, and its function as a negative regulator of growth, is conserved in Drosophila, where it functions with Expanded, a related FERM domain protein. Here, we show that Drosophila Merlin and Expanded are components of the Hippo signalling pathway, an emerging tumour-suppressor pathway. We find that Merlin and Expanded, similar to other components of the Hippo pathway, are required for proliferation arrest and apoptosis in developing imaginal discs. Our genetic and biochemical data place Merlin and Expanded upstream of Hippo and identify a pathway through which they act as tumour-suppressor genes.


Nature Cell Biology | 2003

Hippo Promotes Proliferation Arrest and Apoptosis in the Salvador/Warts Pathway

Ryan S. Udan; Madhuri Kango-Singh; Riitta Nolo; Chunyao Tao; Georg Halder

Proliferation and apoptosis must be precisely regulated to form organs with appropriate cell numbers and to avoid tumour growth. Here we show that Hippo (Hpo), the Drosophila homologue of the mammalian Ste20-like kinases, MST1/2, promotes proper termination of cell proliferation and stimulates apoptosis during development. hpo mutant tissues are larger than normal because mutant cells continue to proliferate beyond normal tissue size and are resistant to apoptotic stimuli that usually eliminate extra cells. Hpo negatively regulates expression of Cyclin E to restrict cell proliferation, downregulates the Drosophila inhibitor of apoptosis protein DIAP1, and induces the proapoptotic gene head involution defective (hid) to promote apoptosis. The mutant phenotypes of hpo are similar to those of warts (wts), which encodes a serine/threonine kinase of the myotonic dystrophy protein kinase family, and salvador (sav), which encodes a WW domain protein that binds to Wts. We find that Sav binds to a regulatory domain of Hpo that is essential for its function, indicating that Hpo acts together with Sav and Wts in a signalling module that coordinately regulates cell proliferation and apoptosis.


The EMBO Journal | 2011

Modulating F-actin organization induces organ growth by affecting the Hippo pathway.

Leticia Sansores-Garcia; Wouter Bossuyt; Ken Ichi Wada; Shigenobu Yonemura; Chunyao Tao; Hiroshi Sasaki; Georg Halder

The Hippo tumour suppressor pathway is a conserved signalling pathway that controls organ size. The core of the Hpo pathway is a kinase cascade, which in Drosophila involves the Hpo and Warts kinases that negatively regulate the activity of the transcriptional coactivator Yorkie. Although several additional components of the Hippo pathway have been discovered, the inputs that regulate Hippo signalling are not fully understood. Here, we report that induction of extra F‐actin formation, by loss of Capping proteins A or B, or caused by overexpression of an activated version of the formin Diaphanous, induced strong overgrowth in Drosophila imaginal discs through modulating the activity of the Hippo pathway. Importantly, loss of Capping proteins and Diaphanous overexpression did not significantly affect cell polarity and other signalling pathways, including Hedgehog and Decapentaplegic signalling. The interaction between F‐actin and Hpo signalling is evolutionarily conserved, as the activity of the mammalian Yorkie‐orthologue Yap is modulated by changes in F‐actin. Thus, regulators of F‐actin, and in particular Capping proteins, are essential for proper growth control by affecting Hippo signalling.


Current Biology | 2006

The Fat Cadherin Acts through the Hippo Tumor-Suppressor Pathway to Regulate Tissue Size

Maria Willecke; Fisun Hamaratoglu; Madhuri Kango-Singh; Ryan S. Udan; Chiao-lin Chen; Chunyao Tao; Xinwei Zhang; Georg Halder

BACKGROUND The Hippo tumor-suppressor pathway has emerged as a key signaling pathway that controls tissue size in Drosophila. Merlin, the Drosophila homolog of the human Neurofibromatosis type-2 (NF2) tumor-suppressor gene, and the related protein Expanded are the most upstream components of the Hippo pathway identified so far. However, components acting upstream of Expanded and Merlin, such as transmembrane receptors, have not yet been identified. RESULTS Here, we report that the protocadherin Fat acts as an upstream component in the Hippo pathway. Fat is a known tumor-suppressor gene in Drosophila, and fat mutants have severely overgrown imaginal discs. We found that the overgrowth phenotypes of fat mutants are similar to those of mutants in Hippo pathway components: fat mutant cells continued to proliferate after wild-type cells stopped proliferating, and fat mutant cells deregulated Hippo target genes such as cyclin E and diap1. Fat acts genetically and biochemically upstream of other Hippo pathway components such as Expanded, the Hippo and Warts kinases, and the transcriptional coactivator Yorkie. Fat is required for the stability of Expanded and its localization to the plasma membrane. In contrast, Fat is not required for Merlin localization, and Fat and Merlin act in parallel in growth regulation. CONCLUSIONS Taken together, our data identify a cell-surface molecule that may act as a receptor of the Hippo signaling pathway.


Development | 2002

Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila

Madhuri Kango-Singh; Riitta Nolo; Chunyao Tao; Patrik Verstreken; P. Robin Hiesinger; Hugo J. Bellen; Georg Halder

During animal development, organ size is determined primarily by the amount of cell proliferation, which must be tightly regulated to ensure the generation of properly proportioned organs. However, little is known about the molecular pathways that direct cells to stop proliferating when an organ has attained its proper size. We have identified mutations in a novel gene, shar-pei, that is required for proper termination of cell proliferation during Drosophila imaginal disc development. Clones of shar-pei mutant cells in imaginal discs produce enlarged tissues containing more cells of normal size. We show that this phenotype is the result of both increased cell proliferation and reduced apoptosis. Hence, shar-pei restricts cell proliferation and promotes apoptosis. By contrast, shar-pei is not required for cell differentiation and pattern formation of adult tissue. Shar-pei is also not required for cell cycle exit during terminal differentiation, indicating that the mechanisms directing cell proliferation arrest during organ growth are distinct from those directing cell cycle exit during terminal differentiation. shar-pei encodes a WW-domain-containing protein that has homologs in worms, mice and humans, suggesting that mechanisms of organ growth control are evolutionarily conserved.


Current Biology | 2006

The bantam MicroRNA Is a Target of the Hippo Tumor-Suppressor Pathway

Riitta Nolo; Clayton M. Morrison; Chunyao Tao; Xinwei Zhang; Georg Halder

BACKGROUND The Hippo tumor-suppressor pathway has emerged as a key signaling pathway that controls tissue size in Drosophila. Hippo signaling restricts tissue size by promoting apoptosis and cell-cycle arrest, and animals carrying clones of cells mutant for hippo develop severely overgrown adult structures. The Hippo pathway is thought to exert its effects by modulating gene expression through the phosphorylation of the transcriptional coactivator Yorkie. However, how Yorkie regulates growth, and thus the identities of downstream target genes that mediate the effects of Hippo signaling, are largely unknown. RESULTS Here, we report that the bantam microRNA is a downstream target of the Hippo signaling pathway. In common with Hippo signaling, the bantam microRNA controls tissue size by regulating cell proliferation and apoptosis. We found that hippo mutant cells had elevated levels of bantam activity and that bantam was required for Yorkie-driven overgrowth. Additionally, overexpression of bantam was sufficient to rescue growth defects of yorkie mutant cells and to suppress the cell death induced by Hippo hyperactivation. Hippo regulates bantam independently of cyclin E and diap1, two other Hippo targets, and overexpression of bantam mimics overgrowth phenotypes of hippo mutant cells. CONCLUSIONS Our data indicate that bantam is an essential target of the Hippo signaling pathway to regulate cell proliferation, cell death, and thus tissue size.


Proceedings of the National Academy of Sciences of the United States of America | 2010

The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila

Chiao Lin Chen; Kathleen Gajewski; Fisun Hamaratoglu; Wouter Bossuyt; Leticia Sansores-Garcia; Chunyao Tao; Georg Halder

Defects in apical-basal cell polarity and abnormal expression of cell polarity determinants are often associated with cancer in vertebrates. In Drosophila, abnormal expression of apical-basal determinants can cause neoplastic phenotypes, including loss of cell polarity and overproliferation. However, the pathways through which apical-basal polarity determinants affect growth are poorly understood. Here, we investigated the mechanism by which the apical determinant Crumbs (Crb) affects growth in Drosophila imaginal discs. Overexpression of Crb causes severe overproliferation, and we found that loss of Crb similarly results in overgrowth of imaginal discs. Crb gain and loss of function caused defects in Hippo signaling, a key signaling pathway that controls tissue growth in Drosophila and mammals. Manipulation of Crb levels caused the up-regulation of Hippo target genes, genetically interacted with known Hippo pathway components, and required Yorkie, a transcriptional coactivator that acts downstream in the Hippo pathway, for target gene induction and overgrowth. Interestingly, Crb regulates growth and cell polarity through different motifs in its intracellular domain. A juxtamembrane FERM domain-binding motif is responsible for growth regulation and induction of Hippo target gene expression, whereas Crb uses a PDZ-binding motif to form a complex with other polarity factors. The Hippo pathway component Expanded, an apically localized adaptor protein, is mislocalized in both crb mutant cells and Crb overexpressing tissues, whereas the other Hippo pathway components, Fat and Merlin, are unaffected. Taken together, our data show that Crb regulates growth through Hippo signaling, and thus identify Crb as a previously undescribed upstream input into the Hippo pathway.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Boundaries of Dachsous Cadherin activity modulate the Hippo signaling pathway to induce cell proliferation

Maria Willecke; Fisun Hamaratoglu; Leticia Sansores-Garcia; Chunyao Tao; Georg Halder

The conserved Hippo tumor suppressor pathway is a key signaling pathway that controls organ size in Drosophila. To date a signal transduction cascade from the Cadherin Fat at the plasma membrane into the nucleus has been discovered. However, how the Hippo pathway is regulated by extracellular signals is poorly understood. Fat not only regulates growth but also planar cell polarity, for which it interacts with the Dachsous (Ds) Cadherin, and Four-jointed (Fj), a transmembrane kinase that modulates the interaction between Ds and Fat. Ds and Fj are expressed in gradients and manipulation of their expression causes abnormal growth. However, how Ds and Fj regulate growth and whether they act through the Hippo pathway is not known. Here, we report that Ds and Fj regulate Hippo signaling to control growth. Interestingly, we found that Ds/Fj regulate the Hippo pathway through a remarkable logic. Induction of Hippo target genes is not proportional to the amount of Ds or Fj presented to a cell, as would be expected if Ds and Fj acted as traditional ligands. Rather, Hippo target genes are up-regulated when neighboring cells express different amounts of Ds or Fj. Consistent with a model that differences in Ds/Fj levels between cells regulate the Hippo pathway, we found that artificial Ds/Fj boundaries induce extra cell proliferation, whereas flattening the endogenous Ds and Fj gradients results in growth defects. The Ds/Fj signaling system thus defines a cell-to-cell signaling mechanism that regulates the Hippo pathway, thereby contributing to the control of organ size.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Tumor suppression by cell competition through regulation of the Hippo pathway

Chiao-lin Chen; Molly C. Schroeder; Madhuri Kango-Singh; Chunyao Tao; Georg Halder

Homeostatic mechanisms can eliminate abnormal cells to prevent diseases such as cancer. However, the underlying mechanisms of this surveillance are poorly understood. Here we investigated how clones of cells mutant for the neoplastic tumor suppressor gene scribble (scrib) are eliminated from Drosophila imaginal discs. When all cells in imaginal discs are mutant for scrib, they hyperactivate the Hippo pathway effector Yorkie (Yki), which drives growth of the discs into large neoplastic masses. Strikingly, when discs also contain normal cells, the scrib− cells do not overproliferate and eventually undergo apoptosis through JNK-dependent mechanisms. However, induction of apoptosis does not explain how scrib− cells are prevented from overproliferating. We report that cell competition between scrib− and wild-type cells prevents hyperproliferation by suppressing Yki activity in scrib− cells. Suppressing Yki activation is critical for scrib− clone elimination by cell competition, and experimental elevation of Yki activity in scrib− cells is sufficient to fuel their neoplastic growth. Thus, cell competition acts as a tumor-suppressing mechanism by regulating the Hippo pathway in scrib− cells.


Current Biology | 2006

Lethal giant discs, a novel C2-domain protein, restricts notch activation during endocytosis.

Jennifer L. Childress; Melih Acar; Chunyao Tao; Georg Halder

The Notch signaling pathway plays a central role in animal growth and patterning, and its deregulation leads to many human diseases, including cancer. Mutations in the tumor suppressor lethal giant discs (lgd) induce strong Notch activation and hyperplastic overgrowth of Drosophila imaginal discs. However, the gene that encodes Lgd and its function in the Notch pathway have not yet been identified. Here, we report that Lgd is a novel, conserved C2-domain protein that regulates Notch receptor trafficking. Notch accumulates on early endosomes in lgd mutant cells and signals in a ligand-independent manner. This phenotype is similar to that seen when cells lose endosomal-pathway components such as Erupted and Vps25. Interestingly, Notch activation in lgd mutant cells requires the early endosomal component Hrs, indicating that Hrs is epistatic to Lgd. These data suggest that Lgd affects Notch trafficking between the actions of Hrs and the late endosomal component Vps25. Taken together, our data identify Lgd as a novel tumor-suppressor protein that regulates Notch signaling by targeting Notch for degradation or recycling.

Collaboration


Dive into the Chunyao Tao's collaboration.

Top Co-Authors

Avatar

Georg Halder

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leticia Sansores-Garcia

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Madhuri Kango-Singh

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Riitta Nolo

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathleen Gajewski

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Maria Willecke

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xinwei Zhang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Chiao-lin Chen

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge