Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chunying Yang is active.

Publication


Featured researches published by Chunying Yang.


Cancer Cell | 2003

Puma is an essential mediator of p53-dependent and -independent apoptotic pathways.

John R. Jeffers; Evan Parganas; Youngsoo Lee; Chunying Yang; Jinling Wang; Jennifer Brennan; Kirsteen H. Maclean; Jia-wen Han; Thomas Chittenden; James N. Ihle; Peter J. McKinnon; John L. Cleveland; Gerard P. Zambetti

Puma encodes a BH3-only protein that is induced by the p53 tumor suppressor and other apoptotic stimuli. To assess its physiological role in apoptosis, we generated Puma knockout mice by gene targeting. Here we report that Puma is essential for hematopoietic cell death triggered by ionizing radiation (IR), deregulated c-Myc expression, and cytokine withdrawal. Puma is also required for IR-induced death throughout the developing nervous system and accounts for nearly all of the apoptotic activity attributed to p53 under these conditions. These findings establish Puma as a principal mediator of cell death in response to diverse apoptotic signals, implicating Puma as a likely tumor suppressor.


Journal of Biological Chemistry | 2004

The Structure of Human Cytochrome P450 2C9 Complexed with Flurbiprofen at 2.0 A Resolution

Michael R. Wester; Jason Yano; G.A Schoch; Chunying Yang; Keith J. Griffin; C.D. Stout; Eric F. Johnson

The structure of human P450 2C9 complexed with flurbiprofen was determined to 2.0 Å by x-ray crystallography. In contrast to other structurally characterized P450 2C enzymes, 2C5, 2C8, and a 2C9 chimera, the native catalytic domain of P450 2C9 differs significantly in the conformation of the helix F to helix G region and exhibits an extra turn at the N terminus of helix A. In addition, a distinct conformation of the helix B to helix C region allows Arg-108 to hydrogen bond with Asp-293 and Asn-289 on helix I and to interact directly with the carboxylate of flurbiprofen. These interactions position the substrate for regioselective oxidation in a relatively large active site cavity and are likely to account for the high catalytic efficiency exhibited by P450 2C9 for the regioselective oxidation of several anionic non-steroidal anti-inflammatory drugs. The structure provides a basis for interpretation of a number of observations regarding the substrate selectivity of P450 2C9 and the observed effects of mutations on catalysis.


Cancer Research | 2014

Blocking Lactate Export by Inhibiting the Myc Target MCT1 Disables Glycolysis and Glutathione Synthesis

Joanne R. Doherty; Chunying Yang; Kristen E.N. Scott; Michael D. Cameron; Mohammad Fallahi; Weimin Li; Mark A. Hall; Antonio L. Amelio; Jitendra Mishra; Fangzheng Li; Mariola Tortosa; Heide Marika Genau; Robert J. Rounbehler; Yunqi Lu; Chi V. Dang; K. Ganesh Kumar; Andrew A. Butler; Thomas D. Bannister; Andrea T. Hooper; Keziban Unsal-Kacmaz; William R. Roush; John L. Cleveland

Myc oncoproteins induce genes driving aerobic glycolysis, including lactate dehydrogenase-A that generates lactate. Here, we report that Myc controls transcription of the lactate transporter SLC16A1/MCT1 and that elevated MCT1 levels are manifest in premalignant and neoplastic Eμ-Myc transgenic B cells and in human malignancies with MYC or MYCN involvement. Notably, disrupting MCT1 function leads to an accumulation of intracellular lactate that rapidly disables tumor cell growth and glycolysis, provoking marked alterations in glycolytic intermediates, reductions in glucose transport, and in levels of ATP, NADPH, and ultimately, glutathione (GSH). Reductions in GSH then lead to increases in hydrogen peroxide, mitochondrial damage, and ultimately, cell death. Finally, forcing glycolysis by metformin treatment augments this response and the efficacy of MCT1 inhibitors, suggesting an attractive combination therapy for MYC/MCT1-expressing malignancies.


Molecular and Cellular Biology | 2008

Selection against PUMA gene expression in Myc-driven B-cell lymphomagenesis.

Sean P. Garrison; John R. Jeffers; Chunying Yang; Jonas Nilsson; Mark A. Hall; Jerold E. Rehg; Wen Yue; Jian Yu; Lin Zhang; Mihaela Onciu; Jeffery T. Sample; John L. Cleveland; Gerard P. Zambetti

ABSTRACT The p53 tumor suppressor pathway limits oncogenesis by inducing cell cycle arrest or apoptosis. A key p53 target gene is PUMA, which encodes a BH3-only proapoptotic protein. Here we demonstrate that Puma deletion in the Eμ-Myc mouse model of Burkitt lymphoma accelerates lymphomagenesis and that ∼75% of Eμ-Myc lymphomas naturally select against Puma protein expression. Furthermore, approximately 40% of primary human Burkitt lymphomas fail to express detectable levels of PUMA and in some tumors this is associated with DNA methylation. Burkitt lymphoma cell lines phenocopy the primary tumors with respect to DNA methylation and diminished PUMA expression, which can be reactivated following inhibition of DNA methyltransferases. These findings establish that PUMA is silenced in human malignancies, and they suggest PUMA as a target for the development of novel chemotherapeutics.


Journal of Virology | 2000

Epstein-Barr virus small RNAs potentiate tumorigenicity of Burkitt lymphoma cells independently of an effect on apoptosis.

Ingrid K. Ruf; Paul W. Rhyne; Chunying Yang; John L. Cleveland; Jeffery T. Sample

ABSTRACT The tumorigenic potential of the Burkitt lymphoma (BL) cell line Akata is dependent on the restricted latency program of Epstein-Barr virus (EBV) that is characteristically maintained in BL tumors. Within these cells, EBV-mediated inhibition of apoptosis correlates with an up-regulation of BCL-2 levels in concert with a down-regulation in c-MYC expression that occurs under growth-limiting conditions. Here we addressed whether EBVs effects on apoptosis and tumorigenicity are mediated by the EBV small RNAs EBER-1 and EBER-2. Stable expression of the EBERs in EBV-negative Akata BL cells, at levels comparable to those in EBV-positive cells, significantly enhanced the tumorigenic potential of EBV-negative BL cells in SCID mice, but did not fully restore tumorigenicity relative to EBV-positive Akata cells. Furthermore, wild-type or greater levels of EBER expression in EBV-negative Akata cells did not promote BL cell survival. These data therefore suggest that EBV can contribute to BL through at least two avenues: an EBER-dependent mechanism that enhances tumorigenic potential independent of a direct effect on apoptosis, and a second mechanism, mediated by an as-yet-unidentified EBV gene(s), that offsets the proapoptotic consequences of deregulated c-MYC in BL.


Molecular Cell | 2003

Myc-mediated proliferation and lymphomagenesis, but not apoptosis, are compromised by E2f1 loss.

Troy A. Baudino; Kirsteen H. Maclean; Jennifer Brennan; Evan Parganas; Chunying Yang; Aaron Aslanian; Jacqueline A. Lees; Charles J. Sherr; Martine F. Roussel; John L. Cleveland

Myc and E2f1 promote cell cycle progression, but overexpression of either can trigger p53-dependent apoptosis. Mice expressing an Emu-Myc transgene in B lymphocytes develop lymphomas, the majority of which sustain mutations of either the Arf or p53 tumor suppressors. Emu-Myc transgenic mice lacking one or both E2f1 alleles exhibited a slower onset of lymphoma development associated with increased expression of the cyclin-dependent kinase inhibitor p27(Kip1) and a reduced S phase fraction in precancerous B cells. In contrast, Myc-induced apoptosis and the frequency of Arf and p53 mutations in lymphomas were unaffected by E2f1 loss. Therefore, Myc does not require E2f1 to induce Arf, p53, or apoptosis in B cells, but depends upon E2f1 to accelerate cell cycle progression and downregulate p27(Kip1).


The EMBO Journal | 2007

Myc targets Cks1 to provoke the suppression of p27Kip1, proliferation and lymphomagenesis

Ulrich Keller; Jennifer B Old; Frank C. Dorsey; Jonas A. Nilsson; Lisa M. Nilsson; Kirsteen H. Maclean; Linda Chung; Chunying Yang; Charles H. Spruck; Kelli L. Boyd; Steven I. Reed; John L. Cleveland

Reduced levels of the cyclin‐dependent kinase inhibitor p27Kip1 connote poor prognosis in cancer. In human Burkitt lymphoma and in precancerous B cells and lymphomas arising in Eμ‐Myc transgenic mice, p27Kip1 expression is markedly reduced. We show that the transcription of the Cks1 component of the SCFSkp2 complex that is necessary for p27Kip1 ubiquitylation and degradation is induced by Myc. Further, Cks1 expression is elevated in precancerous Eμ‐Myc B cells, and high levels of Cks1 are also a hallmark of Eμ‐Myc lymphoma and of human Burkitt lymphoma. Finally, loss of Cks1 in Eμ‐Myc B cells elevates p27Kip1 levels, reduces proliferation and markedly delays lymphoma development and dissemination of disease. Therefore, Myc suppresses p27Kip1 expression, accelerates cell proliferation and promotes tumorigenesis at least in part through its ability to selectively induce Cks1.


Cancer Research | 2009

Targeting Ornithine Decarboxylase Impairs Development of MYCN-Amplified Neuroblastoma

Robert J. Rounbehler; Weimin Li; Mark A. Hall; Chunying Yang; Mohammad Fallahi; John L. Cleveland

Neuroblastoma is a pediatric malignancy that arises from the neural crest, and patients with high-risk neuroblastoma, which typically harbor amplifications of MYCN, have an extremely poor prognosis. The tyrosine hydroxylase (TH) promoter-driven TH-MYCN transgenic mouse model faithfully recapitulates many hallmarks of human MYCN-amplified neuroblastoma. A key downstream target of Myc oncoproteins in tumorigenesis is ornithine decarboxylase (Odc), the rate-limiting enzyme of polyamine biosynthesis. Indeed, sustained treatment with the Odc suicide inhibitor alpha-difluoromethylornithine (DFMO) or Odc heterozygosity markedly impairs lymphoma development in Emicro-Myc transgenic mice, and these effects are linked to the induction of the cyclin-dependent kinase (Cdk) inhibitor p27(Kip1), which is normally repressed by Myc. Here, we report that DFMO treatment, but not Odc heterozygosity, impairs MYCN-induced neuroblastoma and that, in this malignancy, transient DFMO treatment is sufficient to confer protection. The selective anticancer effects of DFMO on mouse and human MYCN-amplified neuroblastoma also rely on its ability to disable the proliferative response of Myc, yet in this tumor context, DFMO targets the expression of the p21(Cip1) Cdk inhibitor, which is also suppressed by Myc oncoproteins. These findings suggest that agents, such as DFMO, that target the polyamine pathway may show efficacy in high-risk, MYCN-amplified neuroblastoma.


Cell | 2012

Tristetraprolin Impairs Myc-Induced Lymphoma and Abolishes the Malignant State

Robert J. Rounbehler; Mohammad Fallahi; Chunying Yang; Meredith A. Steeves; Weimin Li; Joanne R. Doherty; Franz X. Schaub; Sandhya Sanduja; Dan A. Dixon; Perry J. Blackshear; John L. Cleveland

Myc oncoproteins directly regulate transcription by binding to target genes, yet this only explains a fraction of the genes affected by Myc. mRNA turnover is controlled via AU-binding proteins (AUBPs) that recognize AU-rich elements (AREs) found within many transcripts. Analyses of precancerous and malignant Myc-expressing B cells revealed that Myc regulates hundreds of ARE-containing (ARED) genes and select AUBPs. Notably, Myc directly suppresses transcription of Tristetraprolin (TTP/ZFP36), an mRNA-destabilizing AUBP, and this circuit is also operational during B lymphopoiesis and IL7 signaling. Importantly, TTP suppression is a hallmark of cancers with MYC involvement, and restoring TTP impairs Myc-induced lymphomagenesis and abolishes maintenance of the malignant state. Further, there is a selection for TTP loss in malignancy; thus, TTP functions as a tumor suppressor. Finally, Myc/TTP-directed control of select cancer-associated ARED genes is disabled during lymphomagenesis. Thus, Myc targets AUBPs to regulate ARED genes that control tumorigenesis.


Molecular and Cellular Biology | 2006

Essential Role of Phospholipase Cγ2 in Early B-Cell Development and Myc-Mediated Lymphomagenesis

Renren Wen; Yuhong Chen; Li Bai; Guoping Fu; James Schuman; Xuezhi Dai; Hu Zeng; Chunying Yang; Robert P. Stephan; John L. Cleveland; Demin Wang

ABSTRACT Phospholipase Cγ2 (PLCγ2) is a critical signaling effector of the B-cell receptor (BCR). Here we show that PLCγ2 deficiency impedes early B-cell development, resulting in an increase of B220+ CD43+ BP-1+ CD24hi pre-BCR+ large pre-B cells. PLCγ2 deficiency impairs pre-BCR-mediated functions, leading to enhanced interleukin-7 (IL-7) signaling and elevated levels of RAGs in the selected large pre-B cells. Consequently, PLCγ2 deficiency renders large pre-B cells susceptible to transformation, resulting in dramatic acceleration of Myc-induced lymphomagenesis. PLCγ2−/− Eμ-Myc transgenic mice mainly develop lymphomas of B220+ CD43+ BP-1+ CD24hi pre-BCR+ large pre-B-cell origin, which are uncommon in wild-type Eμ-Myc transgenics. Furthermore, lymphomas from PLCγ2−/− Eμ-Myc transgenic mice exhibited a loss of p27Kip1 and often displayed alterations in Arf or p53. Thus, PLCγ2 plays an important role in pre-BCR-mediated early B-cell development, and its deficiency leads to markedly increased pools of the most at-risk large pre-B cells, which display hyperresponsiveness to IL-7 and express high levels of RAGs, making them prone to secondary mutations and Myc-induced malignancy.

Collaboration


Dive into the Chunying Yang's collaboration.

Top Co-Authors

Avatar

John L. Cleveland

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Mohammad Fallahi

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Weimin Li

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Joanne R. Doherty

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Robert J. Rounbehler

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Franz X. Schaub

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Gerard P. Zambetti

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Kirsteen H. Maclean

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William R. Roush

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge