Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chunyu Xu is active.

Publication


Featured researches published by Chunyu Xu.


Cancer Discovery | 2016

Loss of PTEN promotes resistance to T cell–mediated immunotherapy

Weiyi Peng; Jie Qing Chen; Chengwen Liu; Shruti Malu; Caitlin Creasy; Michael T. Tetzlaff; Chunyu Xu; Jodi A. McKenzie; Chunlei Zhang; Xiaoxuan Liang; Leila Williams; Wanleng Deng; Guo Chen; Rina M. Mbofung; Alexander J. Lazar; Carlos A. Torres-Cabala; Zachary A. Cooper; Pei-Ling Chen; Trang Tieu; Stefani Spranger; Xiaoxing Yu; Chantale Bernatchez; Marie-Andree Forget; Cara Haymaker; Rodabe N. Amaria; Jennifer L. McQuade; Isabella C. Glitza; Tina Cascone; Haiyan S. Li; Lawrence N. Kwong

UNLABELLED T cell-mediated immunotherapies are promising cancer treatments. However, most patients still fail to respond to these therapies. The molecular determinants of immune resistance are poorly understood. We show that loss of PTEN in tumor cells in preclinical models of melanoma inhibits T cell-mediated tumor killing and decreases T-cell trafficking into tumors. In patients, PTEN loss correlates with decreased T-cell infiltration at tumor sites, reduced likelihood of successful T-cell expansion from resected tumors, and inferior outcomes with PD-1 inhibitor therapy. PTEN loss in tumor cells increased the expression of immunosuppressive cytokines, resulting in decreased T-cell infiltration in tumors, and inhibited autophagy, which decreased T cell-mediated cell death. Treatment with a selective PI3Kβ inhibitor improved the efficacy of both anti-PD-1 and anti-CTLA-4 antibodies in murine models. Together, these findings demonstrate that PTEN loss promotes immune resistance and support the rationale to explore combinations of immunotherapies and PI3K-AKT pathway inhibitors. SIGNIFICANCE This study adds to the growing evidence that oncogenic pathways in tumors can promote resistance to the antitumor immune response. As PTEN loss and PI3K-AKT pathway activation occur in multiple tumor types, the results support the rationale to further evaluate combinatorial strategies targeting the PI3K-AKT pathway to increase the efficacy of immunotherapy.


Clinical Cancer Research | 2013

BRAF Inhibition Increases Tumor Infiltration by T cells and Enhances the Antitumor Activity of Adoptive Immunotherapy in Mice

Chengwen Liu; Weiyi Peng; Chunyu Xu; Yanyan Lou; Minying Zhang; Jennifer A. Wargo; Jie Qing Chen; Haiyan S. Li; Stephanie S. Watowich; Yan Yang; Dennie T. Frederick; Zachary A. Cooper; Rina M. Mbofung; Mayra Whittington; Keith T. Flaherty; Scott E. Woodman; Michael A. Davies; Laszlo Radvanyi; Willem W. Overwijk; Gregory Lizée; Patrick Hwu

Purpose: Treatment of melanoma patients with selective BRAF inhibitors results in objective clinical responses in the majority of patients with BRAF-mutant tumors. However, resistance to these inhibitors develops within a few months. In this study, we test the hypothesis that BRAF inhibition in combination with adoptive T-cell transfer (ACT) will be more effective at inducing long-term clinical regressions of BRAF-mutant tumors. Experimental Design: BRAF-mutated human melanoma tumor cell lines transduced to express gp100 and H-2Db to allow recognition by gp100-specific pmel-1 T cells were used as xenograft models to assess melanocyte differentiation antigen–independent enhancement of immune responses by BRAF inhibitor PLX4720. Luciferase-expressing pmel-1 T cells were generated to monitor T-cell migration in vivo. The expression of VEGF was determined by ELISA, protein array, and immunohistochemistry. Importantly, VEGF expression after BRAF inhibition was tested in a set of patient samples. Results: We found that administration of PLX4720 significantly increased tumor infiltration of adoptively transferred T cells in vivo and enhanced the antitumor activity of ACT. This increased T-cell infiltration was primarily mediated by the ability of PLX4720 to inhibit melanoma tumor cell production of VEGF by reducing the binding of c-myc to the VEGF promoter. Furthermore, analysis of human melanoma patient tumor biopsies before and during BRAF inhibitor treatment showed downregulation of VEGF consistent with the preclinical murine model. Conclusion: These findings provide a strong rationale to evaluate the potential clinical application of combining BRAF inhibition with T-cell–based immunotherapy for the treatment of patients with melanoma. Clin Cancer Res; 19(2); 393–403. ©2012 AACR.


Cancer Research | 2012

PD-1 BLOCKADE ENHANCES T CELL MIGRATION TO TUMORS BY ELEVATING IFN-γ INDUCIBLE CHEMOKINES

Weiyi Peng; Chengwen Liu; Chunyu Xu; Yanyan Lou; Jieqing Chen; Yan Yang; Hideo Yagita; Willem W. Overwijk; Gregory Lizée; Laszlo Radvanyi; Patrick Hwu

Adoptive cell transfer (ACT) is considered a promising modality for cancer treatment, but despite ongoing improvements, many patients do not experience clinical benefits. The tumor microenvironment is an important limiting factor in immunotherapy that has not been addressed fully in ACT treatments. In this study, we report that upregualtion of the immunosuppressive receptor programmed cell death-1 (PD-1) expressed on transferred T cells at the tumor site, in a murine model of ACT, compared with its expression on transferred T cells present in the peripheral blood and spleen. As PD-1 can attenuate T-cell-mediated antitumor responses, we tested whether its blockade with an anti-PD-1 antibody could enhance the antitumor activity of ACT in this model. Cotreatment with both agents increased the number of transferred T cells at the tumor site and also enhanced tumor regressions, compared with treatments with either agent alone. While anti-PD-1 did not reduce the number of immunosuppressive regulatory T cells and myeloid-derived suppressor cells present in tumor-bearing mice, we found that it increased expression of IFN-γ and CXCL10 at the tumor site. Bone marrow-transplant experiments using IFN-γR-/- mice implicated IFN-γ as a crucial nexus for controlling PD-1-mediated tumor infiltration by T cells. Taken together, our results imply that blocking the PD-1 pathway can increase IFN-γ at the tumor site, thereby increasing chemokine-dependent trafficking of immune cells into malignant disease sites.


Journal of Immunotherapy | 2011

Antitumor Activity Mediated by CpG: The Route of Administration is Critical

Yanyan Lou; Chengwen Liu; Gregory Lizée; Weiyi Peng; Chunyu Xu; Yang Ye; Brian Rabinovich; Yared Hailemichael; Alexander Gelbard; Dapeng Zhou; Willem W. Overwijk; Patrick Hwu

Unmethylated CpG oligodeoxynucleotides (CpG) are synthetic toll-like receptor 9 agonists that activate innate immune cells and which have been tested as an immune therapy in a number of cancer clinical trials. Although some antitumor immune responses have been reported, so far the majority of studies have failed to show significant clinical responses to CpG. Here we showed that the route of administration is critical to the antitumor activity of CpG. Although intravenous (i.v.) injection of CpG was capable of inducing the activation and expansion of tumor antigen-specific T cells, most of these activated T cells failed to migrate to tumor sites. By contrast, intratumoral (i.t.) injection of CpG led to extensive tumor infiltration of antigen-specific T cells and subsequent tumor suppression. We further showed that very high levels of inflammatory chemokines [regulated upon activation, normal T-cell expressed, and secreted (RANTES), interferon-inducible protein-10 (IP-10), monocyte chemoattractant protein-1, monocyte chemotactic protein (MCP5), macrophage inflammatory proteins (MIP1&agr;, and MIP1&bgr;)] were induced in the tumor microenvironment after i.t. CpG injection, compared with administration by the i.v. route. It is interesting to note that, in vivo depletion of plasmacytoid dendritic cells greatly reduced the levels of chemokines induced; also, T-cell accumulation and antitumor effect were impaired. We also showed that i.t. but not i.v. CpG injection induced a broad antigen-specific T-cell response against tumor-derived antigens. Collectively, our data provides evidence that the route of CpG administration is a critical factor in mediating antitumor activity. By inducing localized inflammatory signals at tumor sites, i.t. CpG effectively promotes the migration, activation and function of immune cells, ultimately leading to improved tumor control.


Journal of Immunotherapy | 2012

Agonistic antibody to CD40 boosts the antitumor activity of adoptively transferred T cells in vivo

Chengwen Liu; Carol M. Lewis; Yanyan Lou; Chunyu Xu; Weiyi Peng; Yan Yang; Alexander Gelbard; Gregory Lizée; Dapeng Zhou; Willem W. Overwijk; Patrick Hwu

CD40, a member of the tumor necrosis factor receptor superfamily, is broadly expressed on antigen-presenting cells and other cells, including fibroblasts and endothelial cells. Binding of CD40 and its natural ligand CD40L (CD154) triggers cytokine secretion, and increased expression of costimulatory molecules is required for T-cell activation and proliferation. However, to our knowledge, the use of agonistic antibodies to CD40 to boost adoptively transferred T cells in vivo has not been investigated. The purpose of this study was to determine whether anti-CD40 monoclonal antibody (mAb) in combination with interleukin (IL)-2 could improve the efficacy of in vitro-activated T cells to enhance antitumor activity. Mice bearing B16 melanoma tumors expressing the gp100 tumor antigen were treated with cultured, activated T cells transgenic for a T-cell receptor specifically recognizing gp100, with or without anti-CD40 mAb. In this model, the combination of anti-CD40 mAb with IL-2 led to expansion of adoptively transferred T cells and induced a more robust antitumor response. Furthermore, the expression of CD40 on bone marrow-derived cells and the presence of CD80/CD86 in the host were required for the expansion of adoptively transferred T cells. The use of neutralizing mAb to IL-12 provided direct evidence that enhanced IL-12 secretion induced by anti-CD40 mAb was crucial for the expansion of adoptively transferred T cells. Collectively, these findings provide a rationale to evaluate the potential application of anti-CD40 mAb in adoptive T-cell therapy for cancer.


Journal of the National Cancer Institute | 2018

The Effect of Topoisomerase I Inhibitors on the Efficacy of T-Cell-Based Cancer Immunotherapy

Jodi A. McKenzie; Rina M. Mbofung; Shruti Malu; Min Zhang; Emily Ashkin; Seram Devi; Leila Williams; Trang Tieu; Weiyi Peng; Sunila Pradeep; Chunyu Xu; Soraya Zorro Manrique; Chengwen Liu; Lu Huang; Yuan Chen; Marie-Andree Forget; Cara Haymaker; Chantale Bernatchez; Nikunj Satani; Florian Muller; Jason Roszik; Ashish Kalra; Timothy P. Heffernan; Anil K. Sood; Jianhua Hu; Rodabe N. Amaria; R. Eric Davis; Patrick Hwu

Abstract Background Immunotherapy has increasingly become a staple in cancer treatment. However, substantial limitations in the durability of response highlight the need for more rational therapeutic combinations. The aim of this study is to investigate how to make tumor cells more sensitive to T-cell-based cancer immunotherapy. Methods Two pairs of melanoma patient-derived tumor cell lines and their autologous tumor-infiltrating lymphocytes were utilized in a high-throughput screen of 850 compounds to identify bioactive agents that could be used in combinatorial strategies to improve T-cell-mediated killing of tumor cells. RNAi, overexpression, and gene expression analyses were utilized to identify the mechanism underlying the effect of Topoisomerase I (Top1) inhibitors on T-cell-mediated killing. Using a syngeneic mouse model (n = 5 per group), the antitumor efficacy of the combination of a clinically relevant Top1 inhibitor, liposomal irinotecan (MM-398), with immune checkpoint inhibitors was also assessed. All statistical tests were two-sided. Results We found that Top1 inhibitors increased the sensitivity of patient-derived melanoma cell lines (n = 7) to T-cell-mediated cytotoxicity (P < .001, Dunnett’s test). This enhancement is mediated by TP53INP1, whose overexpression increased the susceptibility of melanoma cell lines to T-cell cytotoxicity (2549 cell line: P = .009, unpaired t test), whereas its knockdown impeded T-cell killing of Top1 inhibitor–treated melanoma cells (2549 cell line: P < .001, unpaired t test). In vivo, greater tumor control was achieved with MM-398 in combination with α-PD-L1 or α-PD1 (P < .001, Tukey’s test). Prolonged survival was also observed in tumor-bearing mice treated with MM-398 in combination with α-PD-L1 (P = .002, log-rank test) or α-PD1 (P = .008, log-rank test). Conclusions We demonstrated that Top1 inhibitors can improve the antitumor efficacy of cancer immunotherapy, thus providing the basis for developing novel strategies using Top1 inhibitors to augment the efficacy of immunotherapy.


Oncogene | 2017

CpG-based immunotherapy impairs antitumor activity of BRAF inhibitors in a B-cell-dependent manner

Lu Huang; Zhe Wang; Chengwen Liu; Chunyu Xu; Rina M. Mbofung; Jodi A. McKenzie; Hiep Khong; Patrick Hwu; Weiyi Peng

Combining immunotherapy with targeted therapy has increasingly become an appealing therapeutic paradigm for cancer treatment due to its great potential for generating durable and synergistic antitumor response. In this study, however, we unexpectedly found that two types of CpG-based tumor peptide vaccine treatments consistently negated the antitumor activity of a selective BRAF inhibitor in tumors with BRAF mutation rather than showing a synergistic antitumor effect. Our further studies demonstrated that CpG alone was sufficient to dampen BRAF inhibitor-induced antitumor responses, suggesting that the impaired antitumor activity of the BRAF inhibitor observed in mice receiving CpG-based peptide vaccine is mainly dependent upon the use of CpG. Mechanistically, CpG increased the number of circulating B cells, which produced elevated amounts of tumor necrosis factor-α (TNFα) that contributed to the increased tumor resistance to BRAF inhibitors. More importantly, B-cell depletion or TNFα neutralization can restore the antitumor effect of BRAF inhibition in mice receiving CpG treatment, indicating that TNFα-secreting B cells play an indispensable role in BRAF inhibitor resistance induced by CpG. Taken together, our results strongly suggest that precautions must be implemented when designing combinatorial approaches for cancer treatment, because distinct regimens, despite their respective therapeutic benefit as monotherapy, may together provide antagonistic clinical outcomes.


Cancer Research | 2016

Abstract 4363: Loss of PTEN promotes resistance to T cell-mediated immunotherapy

Weiyi Peng; Jie Qing Chen; Chengwen Liu; Shruti Malu; Caitlin Creasy; Michael T. Tetzlaff; Chunyu Xu; Jodi A. McKenzie; Chunlei Zhang; Xiaoxuan Liang; Leila Williams; Wanleng Deng; Guo Chen; Rina M. Mbofung; Alexander J. Lazar; Carlos A. Torres-Cabala; Zachary A. Cooper; Pei-Ling Chen; Trang Tieu; Stefani Spranger; Xiaoxing Yu; Chantale Bernatchez; Marie-Andree Forget; Cara Haymaker; Rodabe N. Amaria; Jennifer L. McQuade; Isabella C. Glitza; Tina Cascone; Haiyan Li; Lawrence Kwong

T cell-mediated immunotherapies are promising cancer treatments. However, most patients still fail to respond to these therapies. The molecular determinants of immune resistance are poorly understood. Here, we interrogated the role of loss of expression of the tumor suppressor, PTEN, in immune resistance. In preclinical studies, we found that silencing PTEN in tumor cells inhibited T cell-mediated tumor killing and decreased T cell trafficking into tumors. In clinical studies, we observed that tumors with loss of PTEN had significantly less CD8+ T cell infiltration than PTEN-present tumors. In addition, 26% of melanomas that did not yield successful TIL growth demonstrated PTEN loss, which was more frequent than was observed in tumors that yielded successful TIL growth (11%). We further validated the association between reduced number and impaired function of TIL with PTEN loss using another independent cohort, TCGA dataset for SKCM. More importantly, we analyzed clinical outcomes of metastatic melanoma patients treated with the FDA-approved anti-PD-1 antibodies. Our analysis demonstrates that a greater reduction in tumor burden was achieved by PD-1 blockade in PTEN present patients, when compared with PTEN absent patients. To decipher the factors mediating the immunosuppressive effects of PTEN loss, we determined the expression profiles of tumor cells with or without PTEN expression. Our results indicated that PTEN loss increased the production of immunosuppressive factors, including CCL2 and VEGF. Anti-VEGF blocking antibody improved anti-tumor activity of transferred tumor-reactive T cells and enhanced tumor infiltration of transferred T cells in PTEN-silenced tumors. These results suggest that loss of PTEN can facilitate the resistance of T cell-mediated immune responses by increasing the expression of immunosuppressive factors. Given that PTEN loss results in activation of the PI3K pathway, we evaluated the efficacy of immunotherapy in combination with a selective PI3Kβinhibitor to treat spontaneously developed BRAF mutant, PTEN null melanomas in genetically engineered mouse models. Our result showed that the combination of PI3Kβ inhibitor and anti-PD-1 significantly delayed tumor growth in tumor-bearing mice. Mice treated with this combination had a median survival time of 28 days, which is longer than the survival time of mice treated with either therapy. Increased numbers of T cells at tumor sites were found in mice receiving the combination therapy compared with mice receiving either agent alone. Taken together, our results demonstrate that PTEN loss contributes to the generation of immunosuppressive tumor microenvironment. Notably, this study provides the first direct clinical evidence to support the association between PTEN loss and poor clinical outcome in immunotherapy treated patients. In addition, our study indicates that inhibition of the PI3K-AKT pathway can improve the efficacy of immunotherapy in cancer. Citation Format: Weiyi Peng, Jie Qing Chen, Chengwen Liu, Shruti Malu, Caitlin Creasy, Michael Tetzlaff, Chunyu Xu, Jodi McKenzie, Chunlei Zhang, Xiaoxuan Liang, Leila Williams, Wanleng Deng, Guo Chen, Rina Mbofung, Alexander Lazar, Carlos Torres-Cabala, Zachary Cooper, Pei-Ling Chen, Trang Tieu, Stefani Spranger, Xiaoxing Yu, Chantale Bernatchez, Marie-Andree Forget, Cara Haymaker, Rodabe Amaria, Jennifer McQuade, Isabella Glitza, Tina Cascone, Haiyan Li, Lawrence Kwong, Timothy Heffernan, Jianhua Hu, Roland Bassett, Marcus Bosenberg, Scott Woodman, Willem Overwijk, Gregory Lizee, Jason Roszik, Thomas Gajewski, Jennifer Wargo, Jeffrey Gershenwald, Laszlo Radvanyi, Michael Davies, Patrick Hwu. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 4363.


Journal for ImmunoTherapy of Cancer | 2013

The role of transcription factor Runx2 in tumor infiltrating T cells

Rina M. Mbofung; Weiyi Peng; Chengwen Liu; Chunyu Xu; Shruti Malu; Yan Yang; Wencai Ma; Zhiqiang Wang; Willem W. Overwijk; Eric Davis; Brendan Lee; Patrick Hwu

Adoptive T cell therapy (ACT) is a promising treatment for melanoma patients with a clinical response rate of about 50%. However, half of patients treated do not respond to this therapy, underlining the need for improvement . One of the limitations of ACT is the poor effector function of transferred T cells influenced by the immunosuppressive tumor microenvironment. In order to identify pathways which may contribute to this observation, we used a murine ACT model in which mice bearing established B16 tumors were treated with Pmel T cells which recognize the melanoma antigen gp100 in the context of H-2Db. Pmel T cells were recovered on day 6 and 13, after transfer, from the tumor and spleen of treated mice and their gene expression patterns were compared. We found that 720 genes were differentially expressed by T cells recovered from the tumor site compared to those recovered from the spleen. Amongst the differentially expressed genes were several transcription factors, including Runx2, Rora, E2F1 and Tcf7. After an initial in vivo screen, Runx2 overexpressing Pmels conferred a worse antitumor effect when compared to the control Pmels (median tumor size 30.7 vs 20.7 mm 2 respectively on day 7 after T cell transfer, p<0.05). We also found fewer numbers of circulating Pmels in mice that received Runx2 overexpressing Pmels when compared to mice that received control Pmels. In addition, there was decreased accumulation of Runx2 overexpressing Pmels at the tumor site when compared to the control Pmel (Median luciferase output of 2.0X10 7 vs 9.0X10 7 photons/s/cm 2 /sr, respectively on day 6 after T cell transfer, p value =0.042). To further interrogate the role of Runx2 in T cells, we assessed the production of IFN-g after stimulation in vitro with either plate bound anti-CD3 or gp100 expressing tumor cells. We found that IFN-g production was comparable between Runx2 overexpressing Pmels and control Pmels after anti-CD3 stimulation. However, IFN-g production was impaired in Runx2 overexpressing Pmels upon stimulation with tumor cells. Furthermore, in vitro characterization also revealed that Runx2 overexpressing Pmels have decreased proliferation and display an apoptotic phenotype. Taken together, our studies suggest that Runx2 regulates apoptosis, proliferation and IFN-g production in tumor reactive T cells. Further studies to mechanistically understand these findings are ongoing.


Cancer Research | 2012

Abstract 4385: PD-1 blockade enhances T-cell migration to tumor through induction of IFN-γ inducible chemokines

Weiyi Peng; Chenwen Liu; Chunyu Xu; Jieqin Chen; Yanyan Lou; Willem W. Overwijk; Gregory Lizée; Hideo Yagita; Patrick Hwu

Adoptive cell transfer (ACT) is a promising therapeutic modality for cancer. Although tumor regression can be dramatic in some ACT-treated patients, other patients do not experience any clinical response, underscoring the need for further improvements. One limiting factor in ACT is immune suppression within the tumor microenvironment. In this study, we used a murine ACT model by treating gp100-expressing tumor-bearing mice with transgenic Pmel T-cells, which recognize gp100 in the context of H-2Db. We demonstrated that the expression of programmed death 1(PD-1) on transferred Pmel T-cells was upregulated at the tumor site, compared with transferred T cells in the spleen (48.07% vs 4.87% respectively). Given that PD-1 has been shown to attenuate T-cell mediated antitumor immune responses, we tested whether blockade of the PD-1 pathway by anti-PD-1 antibody could enhance the antitumor activity of adoptively transferred T-cells. We found that tumor-bearing mice treated with a combination of anti-PD-1 and ACT showed enhanced tumor regression compared to mice treated with ACT alone (median tumor size 11.30± 1.89 vs 43.85±7.28 mm2 on day 24 after tumor inoculation, respectively, p Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 4385. doi:1538-7445.AM2012-4385

Collaboration


Dive into the Chunyu Xu's collaboration.

Top Co-Authors

Avatar

Weiyi Peng

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Chengwen Liu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Patrick Hwu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Rina M. Mbofung

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gregory Lizée

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jodi A. McKenzie

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Leila Williams

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Shruti Malu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Willem W. Overwijk

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Rodabe N. Amaria

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge