Chunzheng Wang
East China Normal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chunzheng Wang.
Green Chemistry | 2015
Chunzheng Wang; Lupeng Han; Qiaofei Zhang; Yakun Li; Guofeng Zhao; Ye Liu; Yong Lu
We report a facile, green and generalized method of endogenous growth of 2D boehmite nanosheets (ns) on a 3D network using Al-fibers through oxidation reaction between the Al metal and H2O (2Al + 4H2O = 2AlOOH + 3H2). Such Al-fiber@ns-AlOOH composites have substantial potential applications for microfibrous-structured catalysts and catalytic reactors, being verified by several hot-topic reactions such as CO oxidative coupling to dimethyl oxalate.
RSC Advances | 2016
Jia Ding; Zhiqiang Zhang; Lupeng Han; Chunzheng Wang; Pengjing Chen; Guofeng Zhao; Ye Liu; Yong Lu
A self-supported SS-fiber@meso-HZSM-5 core–shell catalyst was essentially designed and engineered from micro- to macro-scale by caramel-assistant hydrothermal synthesis. The significant role of caramel during the crystallization process was revealed in detail. Caramel not only created the mesoporosity in the ZSM-5 crystals, but also released acid under hydrothermal synthesis conditions which lowered the zeolite crystallinity. By taking advantage of the mesopore development in a hierarchical micro–meso–macropore structure with favourably-tuned acidic properties, such a catalyst provided a dramatically prolonged lifetime of 845 h (>90% conv.) with high propylene selectivity (e.g., 48%) in the MTP reaction. The hierarchical pore structure development mainly increased the accommodation capacity of the zeolite shell for receiving formed coke thereby leading to a dramatically prolonged lifetime in the MTP reaction.
RSC Advances | 2016
Lupeng Han; Chunzheng Wang; Jia Ding; Guofeng Zhao; Ye Liu; Yong Lu
Promising microfibrous-structured Al-fiber@ns-Al2O3@Fe–Mn–K catalysts are developed for the mass/heat-transfer limited Fischer–Tropsch synthesis of light olefins. The Al-fiber@ns-Al2O3 core–shell composites, engineered on the nano- to macro-scale, are first prepared by endogenously growing thin shell (∼0.5 μm) nanosheet γ-Al2O3 (ns-Al2O3) onto the 3-dimentional microfibrous-structured network consisting of 10 vol% 60 μm Al-fiber and 90 vol% voidage. After modification by K through an impregnation method, the Al-fiber@ns-Al2O3 composites are functionalized with nano-structured Fe and Mn active components via a surface impregnation combustion method. The effect of combustion atmospheres (air, N2, and N2 followed by air (N2–air)) on the catalyst performance is investigated. The as-burnt catalyst obtained under air delivers the highest iron time yield of 206.0 μmolCO gFe−1 s−1 at 89.6% CO conversion with 42.1%C selectivity to C2–C4 olefins (350 °C, 4.0 MPa, 10 000 mL (g−1 h−1)), while the other two as-burnt catalysts under N2 and N2–air yield relatively low CO conversions of 58–67%. Combustion under air is helpful to form 6 nm Fe–Mn–K oxide particles with better reducibility and carbonization properties thereby leading to high performance. In contrast, under either N2 or N2–air atmosphere, smaller oxide particles (3–4 nm) are formed but suffer from deteriorated reducibility and carbonization properties due to the strong support–metal interaction. Such as-burnt catalysts obtained under air also demonstrate promising stability.
ACS Applied Materials & Interfaces | 2017
Chunzheng Wang; Jia Ding; Guofeng Zhao; Tao Deng; Ye Liu; Yong Lu
We report a green, template-free, and general one-pot method of endogenous growth of free-standing boehmite (AlOOH) nanosheets on a 3D-network 60 μm-Al-fiber felt through water-only hydrothermal oxidation reaction between Al metal and H2O (2Al + 4H2O → 2AlOOH + 3H2). Content and morphology of AlOOH nanosheets can be finely tuned by adjusting the hydrothermal oxidation time length and temperature. Palladium is highly dispersed on such AlOOH endogenously formed on Al-fiber felt via incipient wetness impregnation method and as-obtained Pd/AlOOH/Al-fiber catalysts are checked in the CO coupling to dimethyl oxalate (DMO) reaction. Interestingly, Pd dispersion is very sensitive to the thickness (26-68 nm) of AlOOH nanosheet, and therefore the conversion shows strong AlOOH-nanosheet-thickness dependence whereas the intrinsic activity (TOF) is AlOOH-nanosheet-thickness independence. The most promising structured catalyst is the one using a microfibrous-structured composite with the thinnest AlOOH nanosheet (26 nm) to support a small amount of Pd of only 0.26 wt %. This catalyst, with high thermal-conductivity and satisfying structural robustness, delivers 67% CO conversion and 96% DMO selectivity at 150 °C using a feed of CH3ONO/CO/N2 (1/1.4/7.6, vol) and a gas hourly space velocity of 3000 L kg-1 h-1, and particularly, is very stable for at least 150 h without deactivation sign.
Chemical Communications | 2014
Xiangyu Wang; Ming Wen; Chunzheng Wang; Jia Ding; Ying Sun; Ye Liu; Yong Lu
Chemical Communications | 2015
Qiaofei Zhang; Xin Ping Wu; Guofeng Zhao; Yakun Li; Chunzheng Wang; Ye Liu; Xue-Qing Gong; Yong Lu
Microporous and Mesoporous Materials | 2016
Ming Wen; Jia Ding; Chunzheng Wang; Yakun Li; Guofeng Zhao; Ye Liu; Yong Lu
Aiche Journal | 2016
Lupeng Han; Chunzheng Wang; Guofeng Zhao; Ye Liu; Yong Lu
Journal of Catalysis | 2016
Chunzheng Wang; Lupeng Han; Pengjing Chen; Guofeng Zhao; Ye Liu; Yong Lu
ACS Catalysis | 2016
Qiaofei Zhang; Xin Ping Wu; Yakun Li; Ruijuan Chai; Guofeng Zhao; Chunzheng Wang; Xue-Qing Gong; Ye Liu; Yong Lu