Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chureeporn Chitchumroonchokchai is active.

Publication


Featured researches published by Chureeporn Chitchumroonchokchai.


Molecular Nutrition & Food Research | 2012

Meal triacylglycerol profile modulates postprandial absorption of carotenoids in humans

Shellen R. Goltz; Wayne W. Campbell; Chureeporn Chitchumroonchokchai; Mark L. Failla; Mario G. Ferruzzi

SCOPE Dietary lipids are considered to be primary potentiators of carotenoid absorption, yet the amount and source required to optimize bioavailability has not been systematically evaluated. The objective of this study was to examine the impact of both amount and source of triacylglycerols on postprandial absorption of carotenoids from vegetable salads. METHODS AND RESULTS Healthy subjects (n = 29) were randomized using a Latin square design (3 × 3) and consumed three identical salads with 3, 8, or 20 g of canola oil, soybean oil, or butter. Blood was collected from 0-10 h and triacylglycerol-rich fractions (TRLs) were isolated by ultracentrifugation. Carotenoid contents of TRL fractions were analyzed by HPLC-DAD. Considering all lipid sources, 20 g of lipid promoted higher absorption compared to 3 and 8 g for all carotenoid species (p < 0.05), except for α-carotene (p = 0.07). The source of lipid had less impact on the absorption of carotenoids than amount of lipid. Pooling results from all lipid amounts, monounsaturated fatty acid rich canola oil trended toward enhancing absorption of lutein and α-carotene compared to saturated fatty acid rich butter (p = 0.06 and p = 0.08, respectively). CONCLUSION While both amount and source of co-consumed lipid affect carotenoid bioavailability from vegetables, amount appears to exert a stronger effect.


Molecular Plant | 2012

The Or Gene Enhances Carotenoid Accumulation and Stability During Post-Harvest Storage of Potato Tubers

Li Li; Yong Yang; Qiang Xu; Katherine Owsiany; Ralf Welsch; Chureeporn Chitchumroonchokchai; Shan Lu; Joyce Van Eck; Xiuxin Deng; Mark L. Failla; Theodore W. Thannhauser

Provitamin A carotenoids in staple crops are not very stable during storage and their loss compromises nutritional quality. To elucidate the fundamental mechanisms underlying carotenoid accumulation and stability, we investigated transgenic potato tubers that expressed the cauliflower Orange (Or) gene. We found that the Or transgene not only promoted retention of β-carotene level, but also continuously stimulated its accumulation during 5 months of cold storage. In contrast, no increased levels of carotenoids were observed in the tubers of vector-only controls or a yellow-flesh variety during the same period of storage. The increased carotenoid accumulation was found to be associated with the formation of lipoprotein-carotenoid sequestering structures, as well as with the enhanced abundance of phytoene synthase, a key enzyme in the carotenoid biosynthetic pathway. Furthermore, the provitamin A carotenoids stored were shown to be stable during simulated digestion and accessible for uptake by human intestinal absorptive cells. Proteomic analysis identified three major functional groups of proteins (i.e. heat shock proteins, glutathione-S-transferases, and carbohydrate metabolic proteins) that are potentially important in the Or-regulated carotenoid accumulation. Our results show that regulation of carotenoid sequestration capacity is an important mechanism by which carotenoid stability is regulated. Our findings suggest that induction of a proper sink structure formation in staple crops may provide the crops with a unique ability to promote and/or stabilize provitamin A accumulation during plant growth and post-harvest storage.


Molecular Nutrition & Food Research | 2013

Anti-tumorigenicity of dietary α-mangostin in an HT-29 colon cell xenograft model and the tissue distribution of xanthones and their phase II metabolites

Chureeporn Chitchumroonchokchai; Jennifer M. Thomas-Ahner; Jie Li; Kenneth M. Riedl; Jannarin Nontakham; Sunit Suksumrarn; Steven K. Clinton; A. Douglas Kinghorn; Mark L. Failla

SCOPE This study investigated the in vivo and in vitro activity of α-mangostin (α-MG), the most abundant xanthone in mangosteen pericarp, on HT-29 cell tumorigenicity, proliferation, and several markers of tumor cell activity, as well as the profile and amounts of xanthones in serum, tumor, liver, and feces. METHODS AND RESULTS Balb/c nu/nu mice were fed either control diet or diet containing 900 mg α-MG/kg. After 1 week of acclimation to diet, mice were injected subcutaneously with HT-29 cells and fed the same diets ad libitum for an additional 2 or 4 weeks. After 2 and 4 weeks, tumor mass and the concentrations of BcL-2 and β-catenin in tumors of mice fed diet with α-MG were significantly less than in mice fed control diet. Xanthones and their metabolites were identified in serum, tumor, liver, and feces. In vitro treatment of HT-29 cells with α-MG also inhibited cell proliferation and decreased expression of BcL-2 and β-catenin. CONCLUSION Our data demonstrate that the anti-neoplastic effect of dietary α-MG is associated with the presence of xanthones in the tumor tissue. Further investigation of the impact of beverages and food products containing xanthones on the prevention of colon cancer or as complementary therapy is merited.


Journal of Agricultural and Food Chemistry | 2012

Retention during Processing and Bioaccessibility of β-Carotene in High β-Carotene Transgenic Cassava Root

Mark L. Failla; Chureeporn Chitchumroonchokchai; Dimuth Siritunga; Fabiana F. De Moura; Martin Fregene; Mark Manary; Richard T. Sayre

Cassava is a root crop that serves as a primary caloric source for many African communities despite its low content of β-carotene (βC). Carotenoid content of roots from wild type (WT) and three transgenic lines with high βC were compared after cooking and preparation of nonfermented and fermented flours according to traditional African methods. The various methods of processing all decreased βC content per gram dry weight regardless of genotype. The greatest loss of βC occurred during preparation of gari (dry fermentation followed by roasting) from WT and transgenic lines. The quantities of βC in cooked transgenic cassava root that partitioned into mixed micelles during in vitro digestion and transported into Caco-2 cells were significantly greater than those for identically processed WT root. These results suggest that transgenic high βC cassava will provide individuals with greater quantities of bioaccessible βC.


Journal of Agricultural and Food Chemistry | 2013

α-Mangostin: Anti-Inflammatory Activity and Metabolism by Human Cells

Fabiola Gutierrez-Orozco; Chureeporn Chitchumroonchokchai; Gregory B. Lesinski; Sunit Suksamrarn; Mark L. Failla

Information about the anti-inflammatory activity and metabolism of α-mangostin (α-MG), the most abundant xanthone in mangosteen fruit, in human cells is limited. On the basis of available literature, we hypothesized that α-MG will inhibit the secretion of pro-inflammatory mediators by control and activated macrophage-like THP-1, hepatic HepG2, enterocyte-like Caco-2, and colon HT-29 human cell lines, as well as primary human monocyte-derived macrophages (MDM), and that such activity would be influenced by the extent of metabolism of the xanthone. α-MG attenuated TNF-α and IL-8 secretion by the various cell lines but increased TNF-α output by both quiescent and LPS-treated MDM. The relative amounts of free and phase II metabolites of α-MG and other xanthones present in media 24 h after addition of α-MG was shown to vary by cell type and inflammatory insult. Increased transport of xanthones and their metabolites across Caco-2 cell monolayers suggests enhanced absorption during an inflammatory episode. The anti-inflammatory activities of xanthones and their metabolites in different tissues merit consideration.


Journal of Nutrition | 2009

Xanthones from Mangosteen Prevent Lipopolysaccharide-Mediated Inflammation and Insulin Resistance in Primary Cultures of Human Adipocytes

Akkarach Bumrungpert; Ruchaneekorn W. Kalpravidh; Chureeporn Chitchumroonchokchai; Chia-Chi Chuang; Tiffany West; Arion Kennedy; Michael McIntosh

The xanthones, alpha- and gamma-mangostin (MG), are major bioactive compounds found in mangosteen and are reported to have antiinflammatory properties in several murine models. Given the association between obesity, chronic low-grade inflammation, and insulin resistance, we examined the effects of alpha- and gamma-MG on markers of inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes treated with lipopolysaccharide (LPS). alpha- and gamma-MG decreased the induction by LPS of inflammatory genes, including tumor necrosis factor-alpha, interleukin (IL)-1beta, IL-6, IL-8, monocyte chemoattractant protein-1, and Toll-like receptor-2. Moreover, alpha- and gamma-MG attenuated LPS activation of the mitogen-activated protein kinases (MAPK) c-jun NH(2)-terminal kinase, extracellular signal-related kinase, and p38. alpha- and gamma-MG also attenuated LPS activation of c-Jun and activator protein (AP)-1 activity. gamma-MG was more effective than alpha-MG on an equimolar basis. Furthermore, gamma-MG but not alpha-MG attenuated LPS-mediated IkappaB-alpha degradation and nuclear factor-kappaB (NF-kappaB) activity. In addition, gamma-MG prevented the suppression by LPS of insulin-stimulated glucose uptake and PPAR-gamma and adiponectin gene expression. Taken together, these data demonstrate that MG attenuates LPS-mediated inflammation and insulin resistance in human adipocytes, possibly by inhibiting the activation of MAPK, NF-kappaB, and AP-1.


Journal of Nutrition | 2012

Xanthones in Mangosteen Juice Are Absorbed and Partially Conjugated by Healthy Adults

Chureeporn Chitchumroonchokchai; Kenneth M. Riedl; Sunit Suksumrarn; Steven K. Clinton; A. Douglas Kinghorn; Mark L. Failla

The proposed health-promoting effects of the pericarp from mangosteen fruit have been attributed to a family of polyphenols referred to as xanthones. The purpose of this study was to determine the bioavailability of xanthones from 100% mangosteen juice in healthy adult participants (n = 10). Pericarp particles accounted for 1% of the mass and 99% of the xanthone concentration in the juice. The juice provided 5.3 ± 0.1 mmol/L total xanthones with α-mangostin, garcinones (C, D, and E), γ-mangostin, gartanins, and other identified xanthones accounting for 58, 2, 6, 4, and 5%, respectively. Participants ingested 60 mL mangosteen juice with a high-fat breakfast. Free and conjugated (glucuronidated/sulfated) xanthones were detected in serum and urine. There was marked variation in the AUC (762-4030 nmol/L × h), maximum concentration (113 ± 107 nmol/L), and time to maximum concentration (3.7 ± 2.4 h) for α-mangostin in sera during the 24-h collection. Similarly, xanthones in 24-h urine ranged from 0.9 to 11.1 μmol and accounted for 2.0 ± 0.3% (range 0.3-3.4%) of the ingested dose. There were no significant differences between female and male participants in mean pharmacokinetic values of α-mangostin in serum and urinary xanthones. Only 15.4 ± 0.7% of total xanthones in pericarp particles in the juice partitioned into mixed micelles during in vitro digestion. These results show that xanthones in mangosteen juice are absorbed when ingested along with a high-fat meal, although release of xanthones from pericarp particles during digestion may be limited.


Molecular Nutrition & Food Research | 2009

Bioaccessibility, biotransformation, and transport of α-mangostin from Garcinia mangostana (Mangosteen) using simulated digestion and Caco-2 human intestinal cells

Akkarach Bumrungpert; Ruchaneekorn W. Kalpravidh; Sunit Suksamrarn; Apinya Chaivisuthangkura; Chureeporn Chitchumroonchokchai; Mark L. Failla

alpha- and gamma-Mangostin are the most abundant prenylated xanthones present in the fruit of the mangosteen tree. These compounds have been reported to possess numerous bioactivities that have provided the impetus for use of mangosteen products as nutraceuticals and in functional foods and dietary supplements. The health-promoting benefits of mangosteen are dependent on delivery of the xanthones to target tissues. Here, we used simulated digestion and Caco-2 cells to investigate the digestive stability, bioaccessibility, and intestinal cell transport of alpha- and gamma- mangostin. Recovery of alpha- and gamma-mangostin after simulated digestion of pericarp and fruit pulp exceeded 90%. Transfer of alpha- and gamma-mangostin to the aqueous fraction during simulated digestion was efficient (65-74%) and dependent on bile salts suggesting that micellarization is required for optimal bioaccessibility of xanthones. Cell uptake of xanthones from micelles was dose dependent and intracellular concentrations were maximum by 1 h. Both free and phase II metabolites of alpha-mangostin were transported in the basolateral compartment and metabolites also effluxed into the apical chamber. Transepithelial transport of alpha-mangostin was increased during prandial-like compared to fasted conditions suggesting that absorption is enhanced by dietary fat.


Food Chemistry | 2012

Susceptibility of anthocyanins to ex vivo degradation in human saliva

Kom Kamonpatana; M. Monica Giusti; Chureeporn Chitchumroonchokchai; Maria MorenoCruz; Kenneth M. Riedl; Purnima S. Kumar; Mark L. Failla

Some fruits and their anthocyanin-rich extracts have been reported to exhibit chemopreventive activity in the oral cavity. Insights regarding oral metabolism of anthocyanins remain limited. Anthocyanin-rich extracts from blueberry, chokeberry, black raspberry, red grape, and strawberry were incubated ex vivo with human saliva from 14 healthy subjects. All anthocyanins were partially degraded in saliva. Degradation of chokeberry anthocyanins in saliva was temperature dependent and decreased by heating saliva to 80 °C and after removal of cells. Glycosides of delphinidin and petunidin were more susceptible to degradation than those of cyanidin, pelargonidin, peonidin and malvidin in both intact and artificial saliva. Stability of di- and tri-saccharide conjugates of anthocyanidins slightly, but significantly, exceeded that of monosaccharide compounds. Ex vivo degradation of anthocyanins in saliva was significantly decreased after oral rinsing with antibacterial chlorhexidine. These results suggest that anthocyanin degradation in the mouth is structure-dependent and largely mediated by oral microbiota.


The American Journal of Clinical Nutrition | 2015

α-Tocopherol bioavailability is lower in adults with metabolic syndrome regardless of dairy fat co-ingestion: a randomized, double-blind, crossover trial

Eunice Mah; Teryn N. Sapper; Chureeporn Chitchumroonchokchai; Mark L. Failla; Kevin E. Schill; Steven K. Clinton; Gerd Bobe; Maret G. Traber; Richard S. Bruno

BACKGROUND Increasing dietary fat intake is expected to improve α-tocopherol bioavailability, which could be beneficial for improving α-tocopherol status, especially in cohorts at high cardiometabolic risk who fail to meet dietary α-tocopherol requirements. OBJECTIVE Our objective was to assess dose-dependent effects of dairy fat and metabolic syndrome (MetS) health status on α-tocopherol pharmacokinetics in plasma and lipoproteins. DESIGN A randomized, crossover, double-blind study was conducted in healthy and MetS adults (n = 10/group) who ingested encapsulated hexadeuterium-labeled (d6)-RRR-α-tocopherol (15 mg) with 240 mL nonfat (0.2 g fat), reduced-fat (4.8 g fat), or whole (7.9 g fat) milk before blood collection at regular intervals for 72 h. RESULTS Compared with healthy participants, those with MetS had lower (P < 0.05) baseline plasma α-tocopherol (μmol/mmol lipid) and greater oxidized low-density lipoprotein (LDL), interleukin (IL)-6, IL-10, and C-reactive protein. Regardless of health status, d6-α-tocopherol bioavailability was unaffected by increasing amounts of dairy fat provided by milk beverages, but MetS participants had lower estimated d6-α-tocopherol absorption (±SEM) than did healthy participants (26.1% ± 1.0% compared with 29.5% ± 1.1%). They also had lower plasma d6-α-tocopherol AUC from 0 to 72 h, as well as maximal concentrations (Cmax: 2.04 ± 0.14 compared with 2.73 ± 0.18 μmol/L) and slower rates of plasma disappearance but similar times to Cmax. MetS participants had lower d6-α-tocopherol AUC from t = 0-12 h (AUC0- t final) in lipoprotein fractions [chylomicron, very-low-density lipoprotein (VLDL), LDL, high-density lipoprotein]. Percentages of d6-α-tocopherol AUC0- t final in both the chylomicron (r = -0.46 to -0.52) and VLDL (r = -0.49 to -0.68) fractions were inversely correlated with oxidized LDL, IL-10, IL-6, and C-reactive protein. CONCLUSIONS At dietary intakes equivalent to the Recommended Dietary Allowance, α-tocopherol bioavailability is unaffected by dairy fat quantity but is lower in MetS adults, potentially because of greater inflammation and oxidative stress that limits small intestinal α-tocopherol absorption and/or impairs hepatic α-tocopherol trafficking. These findings support higher dietary α-tocopherol requirements for MetS adults. This trial was registered at www.clinicaltrials.gov as NCT01787591.

Collaboration


Dive into the Chureeporn Chitchumroonchokchai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinhui Li

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabiana F. De Moura

International Food Policy Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sunit Suksamrarn

Srinakharinwirot University

View shared research outputs
Researchain Logo
Decentralizing Knowledge