Chyan-Chyi Wu
Industrial Technology Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chyan-Chyi Wu.
Sensors | 2009
Mao-Chen Liu; Ching-Liang Dai; Chih-Hua Chan; Chyan-Chyi Wu
This study presents the fabrication of a polyaniline nanofiber ammonia sensor integrated with a readout circuit on a chip using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and a post-process. The micro ammonia sensor consists of a sensing resistor and an ammonia sensing film. Polyaniline prepared by a chemical polymerization method was adopted as the ammonia sensing film. The fabrication of the ammonia sensor needs a post-process to etch the sacrificial layers and to expose the sensing resistor, and then the ammonia sensing film is coated on the sensing resistor. The ammonia sensor, which is of resistive type, changes its resistance when the sensing film adsorbs or desorbs ammonia gas. A readout circuit is employed to convert the resistance of the ammonia sensor into the voltage output. Experimental results show that the sensitivity of the ammonia sensor is about 0.88 mV/ppm at room temperature.
Japanese Journal of Applied Physics | 2005
Ching-Liang Dai; Hsuan-Jung Peng; Mao-Chen Liu; Chyan-Chyi Wu; Heng-Ming Hsu; Lung-Jieh Yang
In this study, we investigate the fabrication of a micromachined microwave switch using the commercial 0.35 µm double polysilicon four metal (DPFM) complementary metal oxide semiconductor (CMOS) process and the post-process of only one maskless wet etching. The post-process has merits of easy execution and low cost. The post-process uses an etchant (silox vapox III) to etch the silicon dioxide layer to release the suspended structures of the microwave switch. The microwave switch is a capacitive type that is actuated by an electrostatic force. The components of the microwave switch are coplanar waveguide (CPW) transmission lines, a suspended membrane and supported springs. Experimental results show that the driving voltage of the switch is about 17 V. The switch has an insertion loss of -2.5 dB at 50 GHz and an isolation of -15 dB at 50 GHz.
Sensors | 2010
Ching-Liang Dai; Yen-Chi Chen; Chyan-Chyi Wu; Chin-Fu Kuo
The study presents a micro carbon monoxide (CO) sensor integrated with a readout circuit-on-a-chip manufactured by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and a post-process. The sensing film of the sensor is a composite cobalt oxide nanosheet and carbon nanotube (CoOOH/CNT) film that is prepared by a precipitation-oxidation method. The structure of the CO sensor is composed of a polysilicon resistor and a sensing film. The sensor, which is of a resistive type, changes its resistance when the sensing film adsorbs or desorbs CO gas. The readout circuit is used to convert the sensor resistance into the voltage output. The post-processing of the sensor includes etching the sacrificial layers and coating the sensing film. The advantages of the sensor include room temperature operation, short response/recovery times and easy post-processing. Experimental results show that the sensitivity of the CO sensor is about 0.19 mV/ppm, and the response and recovery times are 23 s and 34 s for 200 ppm CO, respectively.
Measurement Science and Technology | 2008
Chyan-Chyi Wu; Cheng-Chih Hsu; Ju-Yi Lee; Hui-Yu Chen; Ching-Liang Dai
This paper presents a novel laser encoder for sub-nanometer displacement measurement. It is based on optical heterodyne interferometry and two sets of conjugate optics with a symmetric and quasi-common-path optical configuration. It offers displacement measurements of high stability, high resolution. The theoretical analysis shows that our method can effectively compensate misalignments resulting from the dynamic runout in laser encoders. Experimental results reveal that the laser encoder can detect a displacement variation down to sub-nanometer range.
Sensors | 2011
Ming-Zhi Yang; Ching-Liang Dai; Chyan-Chyi Wu
A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process was investigated. The structure of the ammonia sensor is composed of a sensitive film and polysilicon electrodes. The ammonia sensor requires a post-process to etch the sacrificial layer, and to coat the sensitive film on the polysilicon electrodes. The sensitive film that is prepared by a hydrothermal method is made of zinc oxide. The sensor resistance changes when the sensitive film adsorbs or desorbs ammonia gas. The readout circuit is used to convert the sensor resistance into the voltage output. Experiments show that the ammonia sensor has a sensitivity of about 1.5 mV/ppm at room temperature.
Sensors | 2013
Ming-Zhi Yang; Chyan-Chyi Wu; Ching-Liang Dai; Wen-Jung Tsai
This paper presents the fabrication and characterization of energy harvesting thermoelectric micro generators using the commercial complementary metal oxide semiconductor (CMOS) process. The micro generator consists of 33 thermocouples in series. Thermocouple materials are p-type and n-type polysilicon since they have a large Seebeck coefficient difference. The output power of the micro generator depends on the temperature difference in the hot and cold parts of the thermocouples. In order to increase this temperature difference, the hot part of the thermocouples is suspended to reduce heat-sinking. The micro generator needs a post-CMOS process to release the suspended structures of hot part, which the post-process includes an anisotropic dry etching to etch the sacrificial oxide layer and an isotropic dry etching to remove the silicon substrate. Experiments show that the output power of the micro generator is 9.4 μW at a temperature difference of 15 K.
Sensors | 2009
Ching-Liang Dai; Po-Wei Lu; Chyan-Chyi Wu; Chienliu Chang
In this study, we fabricated a wireless micro FET (field effect transistor) pressure sensor based on the commercial CMOS (complementary metal oxide semiconductor) process and a post-process. The wireless micro pressure sensor is composed of a FET pressure sensor, an oscillator, an amplifier and an antenna. The oscillator is adopted to generate an ac signal, and the amplifier is used to amplify the sensing signal of the pressure sensor. The antenna is utilized to transmit the output voltage of the pressure sensor to a receiver. The pressure sensor is constructed by 16 sensing cells in parallel. Each sensing cell contains an MOS (metal oxide semiconductor) and a suspended membrane, which the gate of the MOS is the suspended membrane. The post-process employs etchants to etch the sacrificial layers in the pressure sensor for releasing the suspended membranes, and a LPCVD (low pressure chemical vapor deposition) parylene is adopted to seal the etch holes in the pressure. Experimental results show that the pressure sensor has a sensitivity of 0.08 mV/kPa in the pressure range of 0–500 kPa and a wireless transmission distance of 10 cm.
Sensors | 2014
Shu Hsien Liao; K. L. Chen; Chun Ming Wang; Jen Jie Chieh; Herng Er Horng; L. M. Wang; Chyan-Chyi Wu; Hong Chang Yang
In this work, we report the use of bio-functionalized magnetic nanoparticles (BMNs) and dynamic magnetic resonance (DMR) to characterize the time-dependent spin-spin relaxation time for sensitive bio-detection. The biomarkers are the human C-reactive protein (CRP) while the BMNs are the anti-CRP bound onto dextran-coated Fe3O4 particles labeled as Fe3O4-antiCRP. It was found the time-dependent spin-spin relaxation time, T2, of protons decreases as time evolves. Additionally, the ΔT2 of of protons in BMNs increases as the concentration of CRP increases. We attribute these to the formation of the magnetic clusters that deteriorate the field homogeneity of nearby protons. A sensitivity better than 0.1 μg/mL for assaying CRP is achieved, which is much higher than that required by the clinical criteria (0.5 mg/dL). The present MR-detection platform shows promise for further use in detecting tumors, viruses, and proteins.
Sensors | 2015
Chien-Fu Fong; Ching-Liang Dai; Chyan-Chyi Wu
A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm.
Sensors | 2009
Pin-Hsu Kao; Ching-Liang Dai; Cheng-Chih Hsu; Chyan-Chyi Wu
In this study we used the commercial 0.35 μm CMOS (complementary metal oxide semiconductor) process and simple maskless post-processing to fabricate an array of micromirrors exhibiting high natural frequency. The micromirrors were manufactured from aluminum; the sacrificial layer was silicon dioxide. Because we fabricated the micromirror arrays using the standard CMOS process, they have the potential to be integrated with circuitry on a chip. For post-processing we used an etchant to remove the sacrificial layer and thereby suspend the micromirrors. The micromirror array contained a circular membrane and four fixed beams set symmetrically around and below the circular mirror; these four fan-shaped electrodes controlled the tilting of the micromirror. A MEMS (microelectromechanical system) motion analysis system and a confocal 3D-surface topography were used to characterize the properties and configuration of the micromirror array. Each micromirror could be rotated in four independent directions. Experimentally, we found that the micromirror had a tilting angle of about 2.55° when applying a driving voltage of 40 V. The natural frequency of the micromirrors was 59.1 kHz.