Ciaran G. Morrison
National University of Ireland, Galway
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ciaran G. Morrison.
The EMBO Journal | 1998
Minoru Takata; Masao S. Sasaki; Eiichiro Sonoda; Ciaran G. Morrison; Mitsumasa Hashimoto; Hiroshi Utsumi; Yuko Yamaguchi-Iwai; Akira Shinohara; Shunichi Takeda
Eukaryotic cells repair DNA double‐strand breaks (DSBs) by at least two pathways, homologous recombination (HR) and non‐homologous end‐joining (NHEJ). Rad54 participates in the first recombinational repair pathway while Ku proteins are involved in NHEJ. To investigate the distinctive as well as redundant roles of these two repair pathways, we analyzed the mutants RAD54−/−, KU70−/− and RAD54−/−/KU70−/−, generated from the chicken B‐cell line DT40. We found that the NHEJ pathway plays a dominant role in repairing γ‐radiation‐induced DSBs during G1–early S phase while recombinational repair is preferentially used in late S–G2 phase. RAD54−/−/KU70−/− cells were profoundly more sensitive to γ‐rays than either single mutant, indicating that the two repair pathways are complementary. Spontaneous chromosomal aberrations and cell death were observed in both RAD54−/− and RAD54−/−/KU70−/− cells, with RAD54−/−/KU70−/− cells exhibiting significantly higher levels of chromosomal aberrations than RAD54−/− cells. These observations provide the first genetic evidence that both repair pathways play a role in maintaining chromosomal DNA during the cell cycle.
Molecular and Cellular Biology | 1999
Eiichiro Sonoda; Masao S. Sasaki; Ciaran G. Morrison; Yuko Yamaguchi-Iwai; Minoru Takata; Shunichi Takeda
ABSTRACT Sister chromatid exchange (SCE) frequency is a commonly used index of chromosomal stability in response to environmental or genetic mutagens. However, the mechanism generating cytologically detectable SCEs and, therefore, their prognostic value for chromosomal stability in mitotic cells remain unclear. We examined the role of the highly conserved homologous recombination (HR) pathway in SCE by measuring SCE levels in HR-defective vertebrate cells. Spontaneous and mitomycin C-induced SCE levels were significantly reduced for chicken DT40 B cells lacking the key HR genes RAD51 and RAD54but not for nonhomologous DNA end-joining (NHEJ)-defectiveKU70−/− cells. As measured by targeted integration efficiency, reconstitution of HR activity by expression of a human RAD51 transgene restored SCE levels to normal, confirming that HR is the mechanism responsible for SCE. Our findings show that HR uses the nascent sister chromatid to repair potentially lethal DNA lesions accompanying replication, which might explain the lethality or tumorigenic potential associated with defects in HR or HR-associated proteins.
Cell Stem Cell | 2010
Mary Mohrin; Emer Bourke; David L. Alexander; Matthew R. Warr; Keegan Barry-Holson; Michelle M. Le Beau; Ciaran G. Morrison; Emmanuelle Passegué
Most adult stem cells, including hematopoietic stem cells (HSCs), are maintained in a quiescent or resting state in vivo. Quiescence is widely considered to be an essential protective mechanism for stem cells that minimizes endogenous stress caused by cellular respiration and DNA replication. We demonstrate that HSC quiescence can also have detrimental effects. We found that HSCs have unique cell-intrinsic mechanisms ensuring their survival in response to ionizing irradiation (IR), which include enhanced prosurvival gene expression and strong activation of p53-mediated DNA damage response. We show that quiescent and proliferating HSCs are equally radioprotected but use different types of DNA repair mechanisms. We describe how nonhomologous end joining (NHEJ)-mediated DNA repair in quiescent HSCs is associated with acquisition of genomic rearrangements, which can persist in vivo and contribute to hematopoietic abnormalities. Our results demonstrate that quiescence is a double-edged sword that renders HSCs intrinsically vulnerable to mutagenesis following DNA damage.
The EMBO Journal | 2000
Ciaran G. Morrison; Eiichiro Sonoda; Noriaki Takao; Akira Shinohara; Ken Yamamoto; Shunichi Takeda
The human genetic disorder ataxia telangiectasia (A‐T), caused by mutation in the ATM gene, is characterized by chromosomal instability, radiosensitivity and defective cell cycle checkpoint activation. DNA double‐strand breaks (dsbs) persist in A‐T cells after irradiation, but the underlying defect is unclear. To investigate ATMs interactions with dsb repair pathways, we disrupted ATM along with other genes involved in the principal, complementary dsb repair pathways of homologous recombination (HR) or non‐homologous end‐joining (NHEJ) in chicken DT40 cells. ATM−/− cells show altered kinetics of radiation‐induced Rad51 and Rad54 focus formation. Ku70‐deficient (NHEJ−) ATM−/− chicken DT40 cells show radiosensitivity and high radiation‐induced chromosomal aberration frequencies, while Rad54‐defective (HR−) ATM−/− cells show only slightly elevated aberration levels after irradiation, placing ATM and HR on the same pathway. These results reveal that ATM defects impair HR‐mediated dsb repair and may link cell cycle checkpoints to HR activation.
The EMBO Journal | 1999
Yuko Yamaguchi-Iwai; Eiichiro Sonoda; Masao S. Sasaki; Ciaran G. Morrison; Tokuko Haraguchi; Yasushi Hiraoka; Yukiko M. Yamashita; Takashi Yagi; Minoru Takata; Carolyn M. Price; Naoki Kakazu; Shunichi Takeda
Yeast Mre11 functions with Rad50 and Xrs2 in a complex that has pivotal roles in homologous recombination (HR) and non‐homologous end‐joining (NHEJ) DNA double‐strand break (DSB) repair pathways. Vertebrate Mre11 is essential. Conditionally, MRE11 null chicken DT40 cells accumulate chromosome breaks and die upon Mre11 repression, showing frequent centrosome amplification. Mre11 deficiency also causes increased radiosensitivity and strongly reduced targeted integration frequencies. Mre11 is, therefore, crucial for HR and essential in mitosis through its role in chromosome maintenance by recombinational repair. Surprisingly perhaps, given the role of Mre11 in yeast NHEJ, disruption of NHEJ by deletion of KU70 greatly exacerbates the effects of MRE11 deficiency, revealing a significant Mre11‐independent component of metazoan NHEJ.
Molecular and Cellular Biology | 2000
Minoru Takata; Masao S. Sasaki; Eiichiro Sonoda; Toru Fukushima; Ciaran G. Morrison; Joanna S. Albala; Sigrid M. A. Swagemakers; Roland Kanaar; Larry H. Thompson; Shunichi Takeda
ABSTRACT The highly conserved Saccharomyces cerevisiae Rad51 protein plays a central role in both mitotic and meiotic homologous DNA recombination. Seven members of the Rad51 family have been identified in vertebrate cells, including Rad51, Dmc1, and five Rad51-related proteins referred to as Rad51 paralogs, which share 20 to 30% sequence identity with Rad51. In chicken B lymphocyte DT40 cells, we generated a mutant with RAD51B/RAD51L1, a member of the Rad51 family, knocked out. RAD51B−/− cells are viable, although spontaneous chromosomal aberrations kill about 20% of the cells in each cell cycle. Rad51B deficiency impairs homologous recombinational repair (HRR), as measured by targeted integration, sister chromatid exchange, and intragenic recombination at the immunoglobulin locus. RAD51B−/− cells are quite sensitive to the cross-linking agents cisplatin and mitomycin C and mildly sensitive to γ-rays. The formation of damage-induced Rad51 nuclear foci is much reduced in RAD51B−/−cells, suggesting that Rad51B promotes the assembly of Rad51 nucleoprotein filaments during HRR. These findings show that Rad51B is important for repairing various types of DNA lesions and maintaining chromosome integrity.
Developmental Cell | 2001
Eiichiro Sonoda; Takahiro Matsusaka; Ciaran G. Morrison; Paola Vagnarelli; Osamu Hoshi; Tatsuo Ushiki; Kuniharu Nojima; Tatsuo Fukagawa; Irene Waizenegger; Jan-Michael Peters; William C. Earnshaw; Shunichi Takeda
Proteolytic cleavage of the cohesin subunit Scc1 is a consistent feature of anaphase onset, although temporal differences exist between eukaryotes in cohesin loss from chromosome arms, as distinct from centromeres. We describe the effects of genetic deletion of Scc1 in chicken DT40 cells. Scc1 loss caused premature sister chromatid separation but did not disrupt chromosome condensation. Scc1 mutants showed defective repair of spontaneous and induced DNA damage. Scc1-deficient cells frequently failed to complete metaphase chromosome alignment and showed chromosome segregation defects, suggesting aberrant kinetochore function. Notably, the chromosome passenger INCENP did not localize normally to centromeres, while the constitutive kinetochore proteins CENP-C and CENP-H behaved normally. These results suggest a role for Scc1 in mitotic regulation, along with cohesion.
Nature | 2014
Johanna Flach; Sietske T. Bakker; Mary Mohrin; Pauline C. Conroy; Eric M. Pietras; Damien Reynaud; Silvia Alvarez; Morgan E. Diolaiti; Fernando Ugarte; E. Camilla Forsberg; Michelle M. Le Beau; Bradley A. Stohr; Juan Mendez; Ciaran G. Morrison; Emmanuelle Passegué
Haematopoietic stem cells (HSCs) self-renew for life, thereby making them one of the few blood cells that truly age. Paradoxically, although HSCs numerically expand with age, their functional activity declines over time, resulting in degraded blood production and impaired engraftment following transplantation. While many drivers of HSC ageing have been proposed, the reason why HSC function degrades with age remains unknown. Here we show that cycling old HSCs in mice have heightened levels of replication stress associated with cell cycle defects and chromosome gaps or breaks, which are due to decreased expression of mini-chromosome maintenance (MCM) helicase components and altered dynamics of DNA replication forks. Nonetheless, old HSCs survive replication unless confronted with a strong replication challenge, such as transplantation. Moreover, once old HSCs re-establish quiescence, residual replication stress on ribosomal DNA (rDNA) genes leads to the formation of nucleolar-associated γH2AX signals, which persist owing to ineffective H2AX dephosphorylation by mislocalized PP4c phosphatase rather than ongoing DNA damage. Persistent nucleolar γH2AX also acts as a histone modification marking the transcriptional silencing of rDNA genes and decreased ribosome biogenesis in quiescent old HSCs. Our results identify replication stress as a potent driver of functional decline in old HSCs, and highlight the MCM DNA helicase as a potential molecular target for rejuvenation therapies.
Molecular and Cellular Biology | 1998
Yuko Yamaguchi-Iwai; Eiichiro Sonoda; Jean Marie Buerstedde; Olga Bezzubova; Ciaran G. Morrison; Minoru Takata; Akira Shinohara; Shunichi Takeda
ABSTRACT Rad52 plays a pivotal role in double-strand break (DSB) repair and genetic recombination in Saccharomyces cerevisiae, where mutation of this gene leads to extreme X-ray sensitivity and defective recombination. Yeast Rad51 and Rad52 interact, as do their human homologues, which stimulates Rad51-mediated DNA strand exchange in vitro, suggesting that Rad51 and Rad52 act cooperatively. To define the role of Rad52 in vertebrates, we generatedRAD52−/− mutants of the chicken B-cell line DT40. Surprisingly, RAD52 −/− cells were not hypersensitive to DNA damages induced by γ-irradiation, methyl methanesulfonate, or cis-platinum(II)diammine dichloride (cisplatin). Intrachromosomal recombination, measured by immunoglobulin gene conversion, and radiation-induced Rad51 nuclear focus formation, which is a putative intermediate step during recombinational repair, occurred as frequently inRAD52 −/− cells as in wild-type cells. Targeted integration frequencies, however, were consistently reduced inRAD52 −/− cells, showing a clear role for Rad52 in genetic recombination. These findings reveal striking differences between S. cerevisiae and vertebrates in the functions of RAD51 and RAD52.
The EMBO Journal | 2006
Helfrid Hochegger; Donniphat Dejsuphong; Toru Fukushima; Ciaran G. Morrison; Eiichiro Sonoda; Valérie Schreiber; Guang Yu Zhao; Alihossein Saberi; Mitsuko Masutani; Noritaka Adachi; Hideki Koyama; Gilbert de Murcia; Shunichi Takeda
Parp‐1 and Parp‐2 are activated by DNA breaks and have been implicated in the repair of DNA single‐strand breaks (SSB). Their involvement in double‐strand break (DSB) repair mediated by homologous recombination (HR) or nonhomologous end joining (NHEJ) remains unclear. We addressed this question using chicken DT40 cells, which have the advantage of carrying only a PARP‐1 gene but not a PARP‐2 gene. We found that PARP‐1−/− DT40 mutants show reduced levels of HR and are sensitive to various DSB‐inducing genotoxic agents. Surprisingly, this phenotype was strictly dependent on the presence of Ku, a DSB‐binding factor that mediates NHEJ. PARP‐1/KU70 double mutants were proficient in the execution of HR and displayed elevated resistance to DSB‐inducing drugs. Moreover, we found deletion of Ligase IV, another NHEJ gene, suppressed the camptothecin of PARP‐1−/− cells. Our results suggest a new critical function for Parp in minimizing the suppressive effects of Ku and the NHEJ pathway on HR.