Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cibu Thomas is active.

Publication


Featured researches published by Cibu Thomas.


Trends in Cognitive Sciences | 2006

Seeing it differently: Visual processing in autism.

Marlene Behrmann; Cibu Thomas; Kate Humphreys

Several recent behavioral and neuroimaging studies have documented an impairment in face processing in individuals with Autism Spectrum Disorder (ASD). It remains unknown, however, what underlying mechanism gives rise to this face processing difficulty. One theory suggests that the difficulty derives from a pervasive problem in social interaction and/or motivation. An alternative view proposes that the face-processing problem is not entirely social in nature and that a visual perceptual impairment might also contribute. The focus of this review is on this latter, perceptual perspective, documenting the psychological and neural alterations that might account for the face processing impairment. The available evidence suggests that perceptual alterations are present in ASD, independent of social function.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited

Cibu Thomas; Frank Q. Ye; M. Okan Irfanoglu; Pooja Modi; Kadharbatcha S. Saleem; David A. Leopold; Carlo Pierpaoli

Significance Diffusion-weighted MRI (DWI) tractography is widely used to map structural connections of the human brain in vivo and has been adopted by large-scale initiatives such as the human connectome project. Our results indicate that, even with high-quality data, DWI tractography alone is unlikely to provide an anatomically accurate map of the brain connectome. It is crucial to complement tractography results with a combination of histological or neurophysiological methods to map structural connectivity accurately. Our findings, however, do not diminish the importance of diffusion MRI as a noninvasive tool that offers important quantitative measures related to brain tissue microstructure and white matter architecture. Tractography based on diffusion-weighted MRI (DWI) is widely used for mapping the structural connections of the human brain. Its accuracy is known to be limited by technical factors affecting in vivo data acquisition, such as noise, artifacts, and data undersampling resulting from scan time constraints. It generally is assumed that improvements in data quality and implementation of sophisticated tractography methods will lead to increasingly accurate maps of human anatomical connections. However, assessing the anatomical accuracy of DWI tractography is difficult because of the lack of independent knowledge of the true anatomical connections in humans. Here we investigate the future prospects of DWI-based connectional imaging by applying advanced tractography methods to an ex vivo DWI dataset of the macaque brain. The results of different tractography methods were compared with maps of known axonal projections from previous tracer studies in the macaque. Despite the exceptional quality of the DWI data, none of the methods demonstrated high anatomical accuracy. The methods that showed the highest sensitivity showed the lowest specificity, and vice versa. Additionally, anatomical accuracy was highly dependent upon parameters of the tractography algorithm, with different optimal values for mapping different pathways. These results suggest that there is an inherent limitation in determining long-range anatomical projections based on voxel-averaged estimates of local fiber orientation obtained from DWI data that is unlikely to be overcome by improvements in data acquisition and analysis alone.


Nature Neuroscience | 2009

Reduced structural connectivity in ventral visual cortex in congenital prosopagnosia

Cibu Thomas; Galia Avidan; Kate Humphreys; Kwan-Jin Jung; Fuqiang Gao; Marlene Behrmann

Using diffusion tensor imaging and tractography, we found that a disruption in structural connectivity in ventral occipito-temporal cortex may be the neurobiological basis for the lifelong impairment in face recognition that is experienced by individuals who suffer from congenital prosopagnosia. Our findings suggest that white-matter fibers in ventral occipito-temporal cortex support the integrated function of a distributed cortical network that subserves normal face processing.


NeuroImage | 2013

Teaching an adult brain new tricks: A critical review of evidence for training-dependent structural plasticity in humans ☆

Cibu Thomas; Chris I. Baker

A growing number of structural neuroimaging studies have reported significant changes in gray matter density or volume and white matter microstructure in the adult human brain following training. Such reports appear consistent with animal studies of training-dependent structural plasticity showing changes in, for example, dendritic spines. However, given the microscopic nature of these changes in animals and the relatively low spatial resolution of MRI, it is unclear that such changes can be reliably detected in humans. Here, we critically evaluate the robustness of the current evidence in humans, focusing on the specificity, replicability, and the relationship of the reported changes with behavior. We find that limitations of experimental design, statistical methods, and methodological artifacts may underlie many of the reported effects, seriously undermining the evidence for training-dependent structural changes in adult humans. The most robust evidence, showing specificity of structural changes to training, task and brain region, shows changes in anterior hippocampal volume with exercise in elderly participants. We conclude that more compelling evidence and converging data from animal studies is required to substantiate structural changes in the adult human brain with training, especially in the neocortex.


Neuron | 2010

Normal Movement Selectivity in Autism

Ilan Dinstein; Cibu Thomas; Kate Humphreys; Nancy J. Minshew; Marlene Behrmann; David J. Heeger

It has been proposed that individuals with autism have difficulties understanding the goals and intentions of others because of a fundamental dysfunction in the mirror neuron system. Here, however, we show that individuals with autism exhibited not only normal fMRI responses in mirror system areas during observation and execution of hand movements but also exhibited typical movement-selective adaptation (repetition suppression) when observing or executing the same movement repeatedly. Movement selectivity is a defining characteristic of neurons involved in movement perception, including mirror neurons, and, as such, these findings argue against a mirror system dysfunction in autism.


Cortex | 2011

The anatomy of the callosal and visual-association pathways in high-functioning autism: A DTI tractography study

Cibu Thomas; Kate Humphreys; Kwan-Jin Jung; Nancy J. Minshew; Marlene Behrmann

There is increasing recognition that many of the core behavioral impairments that characterize autism potentially emerge from poor neural synchronization across nodes comprising dispersed cortical networks. A likely candidate for the source of this atypical functional connectivity in autism is an alteration in the structural integrity of intra- and inter-hemispheric white matter (WM) tracts that form large-scale cortical networks. To test this hypothesis, in a group of adults with high-functioning autism (HFA) and matched control participants, we used diffusion tensor tractography to compare the structural integrity of three intra-hemispheric visual-association WM tracts, the inferior longitudinal fasciculus (ILF), the inferior fronto-occipito fasciculus (IFOF) and the uncinate fasciculus (UF), with the integrity of three sub-portions of the major inter-hemispheric fiber tract, the corpus callosum. Compared with the control group, the HFA group evinced an increase in the volume of the intra-hemispheric fibers, particularly in the left hemisphere, and a reduction in the volume of the forceps minor (F-Mi) and body of the corpus callosum. The reduction in the volume of the F-Mi also correlated with an increase in repetitive and stereotypical behavior as measured by the Autism Diagnostic Interview. These findings suggest that the abnormalities in the integrity of key inter- and intra-hemispheric WM tracts may underlie the atypical information processing observed in these individuals.


Cerebral Cortex | 2014

Emerging Structure–Function Relations in the Developing Face Processing System

K. Suzanne Scherf; Cibu Thomas; Jaime Doyle; Marlene Behrmann

To evaluate emerging structure-function relations in a neural circuit that mediates complex behavior, we investigated age-related differences among cortical regions that support face recognition behavior and the fiber tracts through which they transmit and receive signals using functional neuroimaging and diffusion tensor imaging. In a large sample of human participants (aged 6-23 years), we derived the microstructural and volumetric properties of the inferior longitudinal fasciculus (ILF), the inferior fronto-occipital fasciculus, and control tracts, using independently defined anatomical markers. We also determined the functional characteristics of core face- and place-selective regions that are distributed along the trajectory of the pathways of interest. We observed disproportionately large age-related differences in the volume, fractional anisotropy, and mean and radial, but not axial, diffusivities of the ILF. Critically, these differences in the structural properties of the ILF were tightly and specifically linked with an age-related increase in the size of a key face-selective functional region, the fusiform face area. This dynamic association between emerging structural and functional architecture in the developing brain may provide important clues about the mechanisms by which neural circuits become organized and optimized in the human cortex.


Cortex | 2015

Diffusion MRI properties of the human uncinate fasciculus correlate with the ability to learn visual associations

Cibu Thomas; Alexandru V. Avram; Carlo Pierpaoli; Chris I. Baker

The uncinate fasciculus (UF) is a cortico-cortico white matter pathway that links the anterior temporal and the orbitofrontal cortex (OFC). In the monkey, transection of the UF causes significant impairments in learning conditional visual-visual associations, while object discrimination remains intact, suggesting an important role for the UF in mediating the learning of complex visual associations. Whether this functional role extends to the human UF has not been tested directly. Here, we used diffusion tensor magnetic resonance imaging (dMRI) and behavioral experiments to examine the relation between learning visual associations and the structural properties of the human UF. In a group of healthy adults, we segmented the UF and the inferior longitudinal fasciculus (ILF) and derived dMRI measures of the structural properties of the two pathways. We also used a behavioral experiment adapted from the monkey studies to characterize the ability of these individuals to learn to associate a persons face with a group of specific scenes (conditional visual-visual association). We then tested whether the variability in the dMRI measures of the two pathways correlated with variability in the ability to rapidly learn the face-place associations. Our study suggests that in the human, the left UF may be important for mediating the rapid learning of conditional visual-visual associations whereas the right UF may play an important role in the immediate retrieval of visual-visual associations. These results provide preliminary evidence suggesting similarities and differences in the functional role of the UF in monkeys compared to humans. The findings presented here contribute to our understanding of the functional role of the UF in humans and the functional neuroanatomy of the brain networks involved in visual cognition.


NeuroImage | 2016

Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure.

Alexandru V. Avram; Joelle E. Sarlls; Alan S. Barnett; Evren Özarslan; Cibu Thomas; M. Okan Irfanoglu; Elizabeth B. Hutchinson; Carlo Pierpaoli; Peter J. Basser

Diffusion tensor imaging (DTI) is the most widely used method for characterizing noninvasively structural and architectural features of brain tissues. However, the assumption of a Gaussian spin displacement distribution intrinsic to DTI weakens its ability to describe intricate tissue microanatomy. Consequently, the biological interpretation of microstructural parameters, such as fractional anisotropy or mean diffusivity, is often equivocal. We evaluate the clinical feasibility of assessing brain tissue microstructure with mean apparent propagator (MAP) MRI, a powerful analytical framework that efficiently measures the probability density function (PDF) of spin displacements and quantifies useful metrics of this PDF indicative of diffusion in complex microstructure (e.g., restrictions, multiple compartments). Rotation invariant and scalar parameters computed from the MAP show consistent variation across neuroanatomical brain regions and increased ability to differentiate tissues with distinct structural and architectural features compared with DTI-derived parameters. The return-to-origin probability (RTOP) appears to reflect cellularity and restrictions better than MD, while the non-Gaussianity (NG) measures diffusion heterogeneity by comprehensively quantifying the deviation between the spin displacement PDF and its Gaussian approximation. Both RTOP and NG can be decomposed in the local anatomical frame for reference determined by the orientation of the diffusion tensor and reveal additional information complementary to DTI. The propagator anisotropy (PA) shows high tissue contrast even in deep brain nuclei and cortical gray matter and is more uniform in white matter than the FA, which drops significantly in regions containing crossing fibers. Orientational profiles of the propagator computed analytically from the MAP MRI series coefficients allow separation of different fiber populations in regions of crossing white matter pathways, which in turn improves our ability to perform whole-brain fiber tractography. Reconstructions from subsampled data sets suggest that MAP MRI parameters can be computed from a relatively small number of DWIs acquired with high b-value and good signal-to-noise ratio in clinically achievable scan durations of less than 10min. The neuroanatomical consistency across healthy subjects and reproducibility in test-retest experiments of MAP MRI microstructural parameters further substantiate the robustness and clinical feasibility of this technique. The MAP MRI metrics could potentially provide more sensitive clinical biomarkers with increased pathophysiological specificity compared to microstructural measures derived using conventional diffusion MRI techniques.


NeuroImage | 2016

Impact of time-of-day on brain morphometric measures derived from T1-weighted magnetic resonance imaging.

Aaron Trefler; Neda Sadeghi; Adam G. Thomas; Carlo Pierpaoli; Chris I. Baker; Cibu Thomas

Measures of brain morphometry derived from T1-weighted (T1W) magnetic resonance imaging (MRI) are widely used to elucidate the relation between brain structure and function. However, the computation of T1W morphometric measures can be confounded by subject-related factors such as head motion and level of hydration. A recent study reported subtle yet significant changes in brain volume from morning to evening in a large group of patient populations as well as in healthy elderly individuals. In addition, there is a growing recognition that factors such as circadian rhythm can impact MRI measures of brain function and structure. Here, we provide a comprehensive assessment of the impact of time-of-day (TOD) on widely used measures of brain morphometry in a group of 19 healthy young adults. Our results show that (a) even in a small group of healthy adult volunteers, a highly significant reduction in apparent brain volume, from morning to evening, could be detected; (b) the apparent volume of all three major tissue compartments - gray matter, white matter, and cerebrospinal fluid - were influenced by TOD, and the magnitude of the TOD effect varied across the tissue compartments; (c) measures of cortical thickness, cortical surface area, and gray matter density computed with widely used neuroimaging software suites (i.e., FreeSurfer, FSL-VBM) were all affected by TOD, while other measures, such as curvature indices and sulcal depth, were not; and (d) the effect of TOD appeared to have a greater impact on morphometric measures of the frontal and temporal lobe than on other major lobes of the brain. Our results suggest that the TOD effect is a physiological phenomenon and that controlling for the effect of TOD is crucial for proper interpretation of apparent structural differences measured with T1W morphometry.

Collaboration


Dive into the Cibu Thomas's collaboration.

Top Co-Authors

Avatar

Marlene Behrmann

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Chris I. Baker

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Carlo Pierpaoli

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kate Humphreys

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Galia Avidan

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

M. Okan Irfanoglu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Neda Sadeghi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Aaron Trefler

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Amritha Nayak

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David J. Heeger

Center for Neural Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge