Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ciera C. Martinez is active.

Publication


Featured researches published by Ciera C. Martinez.


Plant Physiology | 2014

A Modern Ampelography: A Genetic Basis for Leaf Shape and Venation Patterning in Grape

Daniel H. Chitwood; Aashish Ranjan; Ciera C. Martinez; Lauren R. Headland; Thinh Thiem; Ravi Kumar; Michael F. Covington; Tommy Hatcher; Daniel T. Naylor; Sharon Zimmerman; Nora Downs; Nataly Raymundo; Edward S. Buckler; Julin N. Maloof; Mallikarjuna K. Aradhya; Bernard Prins; Lin Li; Sean Myles; Neelima Sinha

Statistical methods can globally describe the complex shapes of grape leaves, permitting the evaluation of not only the genetic basis of leaf shape but its correlation with traits of economic interest. Terroir, the unique interaction between genotype, environment, and culture, is highly refined in domesticated grape (Vitis vinifera). Toward cultivating terroir, the science of ampelography tried to distinguish thousands of grape cultivars without the aid of genetics. This led to sophisticated phenotypic analyses of natural variation in grape leaves, which within a palmate-lobed framework exhibit diverse patterns of blade outgrowth, hirsuteness, and venation patterning. Here, we provide a morphometric analysis of more than 1,200 grape accessions. Elliptical Fourier descriptors provide a global analysis of leaf outlines and lobe positioning, while a Procrustes analysis quantitatively describes venation patterning. Correlation with previous ampelography suggests an important genetic component, which we confirm with estimates of heritability. We further use RNA-Seq of mutant varieties and perform a genome-wide association study to explore the genetic basis of leaf shape. Meta-analysis reveals a relationship between leaf morphology and hirsuteness, traits known to correlate with climate in the fossil record and extant species. Together, our data demonstrate a genetic basis for the intricate diversity present in grape leaves. We discuss the possibility of using grape leaves as a breeding target to preserve terroir in the face of anticipated climate change, a major problem facing viticulture.


PLOS ONE | 2011

The Populus Class III HD ZIP Transcription Factor POPCORONA Affects Cell Differentiation during Secondary Growth of Woody Stems

Juan Du; Eriko Miura; Marcel Robischon; Ciera C. Martinez; Andrew Groover

The developmental mechanisms regulating cell differentiation and patterning during the secondary growth of woody tissues are poorly understood. Class III HD ZIP transcription factors are evolutionarily ancient and play fundamental roles in various aspects of plant development. Here we investigate the role of a Class III HD ZIP transcription factor, POPCORONA, during secondary growth of woody stems. Transgenic Populus (poplar) trees expressing either a miRNA-resistant POPCORONA or a synthetic miRNA targeting POPCORONA were used to infer function of POPCORONA during secondary growth. Whole plant, histological, and gene expression changes were compared for transgenic and wild-type control plants. Synthetic miRNA knock down of POPCORONA results in abnormal lignification in cells of the pith, while overexpression of a miRNA-resistant POPCORONA results in delayed lignification of xylem and phloem fibers during secondary growth. POPCORONA misexpression also results in coordinated changes in expression of genes within a previously described transcriptional network regulating cell differentiation and cell wall biosynthesis, and hormone-related genes associated with fiber differentiation. POPCORONA illustrates another function of Class III HD ZIPs: regulating cell differentiation during secondary growth.


The Plant Cell | 2012

Leaf Asymmetry as a Developmental Constraint Imposed by Auxin-Dependent Phyllotactic Patterning

Daniel H. Chitwood; Lauren R. Headland; Ashish Ranjan; Ciera C. Martinez; Siobhan A. Braybrook; Daniel Koenig; Cris Kuhlemeier; Richard S. Smith; Neelima Sinha

Superficially, many angiosperm leaves appear bilaterally symmetric. However, is there a systematic source of asymmetry in leaves? This work describes left-right asymmetries in tomato and Arabidopsis thaliana leaves that are dependent on phyllotactic direction. Using modeling and empirical results, the authors infer such asymmetry arises via biased auxin distribution in leaf primordia. In a majority of species, leaf development is thought to proceed in a bilaterally symmetric fashion without systematic asymmetries. This is despite the left and right sides of an initiating primordium occupying niches that differ in their distance from sinks and sources of auxin. Here, we revisit an existing model of auxin transport sufficient to recreate spiral phyllotactic patterns and find previously overlooked asymmetries between auxin distribution and the centers of leaf primordia. We show that it is the direction of the phyllotactic spiral that determines the side of the leaf these asymmetries fall on. We empirically confirm the presence of an asymmetric auxin response using a DR5 reporter and observe morphological asymmetries in young leaf primordia. Notably, these morphological asymmetries persist in mature leaves, and we observe left-right asymmetries in the superficially bilaterally symmetric leaves of tomato (Solanum lycopersicum) and Arabidopsis thaliana that are consistent with modeled predictions. We further demonstrate that auxin application to a single side of a leaf primordium is sufficient to recapitulate the asymmetries we observe. Our results provide a framework to study a previously overlooked developmental axis and provide insights into the developmental constraints imposed upon leaf morphology by auxin-dependent phyllotactic patterning.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Gradual disintegration of the floral symmetry gene network is implicated in the evolution of a wind-pollination syndrome

Jill C. Preston; Ciera C. Martinez; Lena C. Hileman

Angiosperms exhibit staggering diversity in floral form, and evolution of floral morphology is often correlated with changes in pollination syndrome. The showy, bilaterally symmetrical flowers of the model species Antirrhinum majus (Plantaginaceae) are highly specialized for bee pollination. In A. majus, CYCLOIDEA (CYC), DICHOTOMA (DICH), RADIALIS (RAD), and DIVARICATA (DIV) specify the development of floral bilateral symmetry. However, it is unclear to what extent evolution of these genes has resulted in flower morphological divergence among closely related members of Plantaginaceae differing in pollination syndrome. We compared floral symmetry genes from insect-pollinated Digitalis purpurea, which has bilaterally symmetrical flowers, with those from closely related Aragoa abietina and wind-pollinated Plantago major, both of which have radially symmetrical flowers. We demonstrate that Plantago, but not Aragoa, species have lost a dorsally expressed CYC-like gene and downstream targets RAD and DIV. Furthermore, the single P. major CYC-like gene is expressed across all regions of the flower, similar to expression of its ortholog in closely related Veronica serpyllifolia. We propose that changes in the expression of duplicated CYC-like genes led to the evolution of radial flower symmetry in Aragoa/Plantago, and that further disintegration of the symmetry gene pathway resulted in the wind-pollination syndrome of Plantago. This model underscores the potential importance of gene loss in the evolution of ecologically important traits.


The Plant Cell | 2014

Resolving Distinct Genetic Regulators of Tomato Leaf Shape within a Heteroblastic and Ontogenetic Context

Daniel H. Chitwood; Aashish Ranjan; Ravi Kumar; Yasunori Ichihashi; Kristina Zumstein; Lauren R. Headland; Enrique Ostria-Gallardo; José Antonio Aguilar-Martínez; Susan M. Bush; Leonela Carriedo; Daniel Fulop; Ciera C. Martinez; Jie Peng; Julin N. Maloof; Neelima Sinha

Leaf shape is dynamic and influenced by numerous factors. Here, the authors quantify shape differences in leaves across the leaf series and during their development, determining their genetic basis and the effects of environment, in a population resulting from a cross between tomato and a wild desert relative. Leaf shape is mutable, changing in ways modulated by both development and environment within genotypes. A complete model of leaf phenotype would incorporate the changes in leaf shape during juvenile-to-adult phase transitions and the ontogeny of each leaf. Here, we provide a morphometric description of >33,000 leaflets from a set of tomato (Solanum spp) introgression lines grown under controlled environment conditions. We first compare the shape of these leaves, arising during vegetative development, with >11,000 previously published leaflets from a field setting and >11,000 leaflets from wild tomato relatives. We then quantify the changes in shape, across ontogeny, for successive leaves in the heteroblastic series. Using principal component analysis, we then separate genetic effects modulating (1) the overall shape of all leaves versus (2) the shape of specific leaves in the series, finding the former more heritable than the latter and comparing quantitative trait loci regulating each. Our results demonstrate that phenotype is highly contextual and that unbiased assessments of phenotype, for quantitative genetic or other purposes, would ideally sample the many developmental and environmental factors that modulate it.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Trifoliate encodes an MYB transcription factor that modulates leaf and shoot architecture in tomato

Ali Ahmad Naz; Smita Raman; Ciera C. Martinez; Neelima Sinha; Gregor Schmitz; Klaus Theres

Leaf morphology and the pattern of shoot branching determine to a large extent the growth habit of seed plants. Until recently, the developmental processes that led to the establishment of these morphological structures seemed unrelated. Here, we show that the tomato Trifoliate (Tf) gene plays a crucial role in both processes, affecting the formation of leaflets in the compound tomato leaf and the initiation of axillary meristems in the leaf axil. Tf encodes a myeloblastosis oncoprotein (MYB)-like transcription factor related to the Arabidopsis thaliana LATERAL ORGAN FUSION1 (LOF1) and LOF2 proteins. Tf is expressed in the leaf margin, where leaflets are formed, and in the leaf axil, where axillary meristems initiate. During tomato ontogeny, expression of Tf in young leaf primordia increases, correlating with a rise in leaf dissection (heteroblasty). Formation of leaflets and initiation of axillary meristems can be traced back to groups of pluripotent cells. Tf function is required to inhibit differentiation of these cells and thereby to maintain their morphogenetic competence, a fundamental process in plant development. KNOTTED1-LIKE proteins, which are known regulators in tomato leaf dissection, require Tf activity to exert their function in the basal part of the leaf. Similarly, the plant hormone auxin needs Tf activity to initiate the formation of lateral leaflets. Thus, leaf dissection and shoot branching rely on a conserved mechanism that regulates the morphogenetic competence of cells at the leaf margin and in the leaf axil.


Plant Physiology | 2015

Light-Induced Indeterminacy Alters Shade-Avoiding Tomato Leaf Morphology

Daniel H. Chitwood; Ravi Kumar; Aashish Ranjan; Julie M. Pelletier; Brad Townsley; Yasunori Ichihashi; Ciera C. Martinez; Kristina Zumstein; John J. Harada; Julin N. Maloof; Neelima Sinha

Shade avoidance increases indeterminacy in the initiating leaf primordium, increasing leaf complexity and serration through a heteroblasty-independent mechanism. Plants sense the foliar shade of competitors and alter their developmental programs through the shade-avoidance response. Internode and petiole elongation, and changes in overall leaf area and leaf mass per area, are the stereotypical architectural responses to foliar shade in the shoot. However, changes in leaf shape and complexity in response to shade remain incompletely, and qualitatively, described. Using a meta-analysis of more than 18,000 previously published leaflet outlines, we demonstrate that shade avoidance alters leaf shape in domesticated tomato (Solanum lycopersicum) and wild relatives. The effects of shade avoidance on leaf shape are subtle with respect to individual traits but are combinatorially strong. We then seek to describe the developmental origins of shade-induced changes in leaf shape by swapping plants between light treatments. Leaf size is light responsive late into development, but patterning events, such as stomatal index, are irrevocably specified earlier. Observing that shade induces increases in shoot apical meristem size, we then describe gene expression changes in early leaf primordia and the meristem using laser microdissection. We find that in leaf primordia, shade avoidance is not mediated through canonical pathways described in mature organs but rather through the expression of KNOTTED1-LIKE HOMEOBOX and other indeterminacy genes, altering known developmental pathways responsible for patterning leaf shape. We also demonstrate that shade-induced changes in leaf primordium gene expression largely do not overlap with those found in successively initiated leaf primordia, providing evidence against classic hypotheses that shaded leaf morphology results from the prolonged production of juvenile leaf types.


Frontiers in Plant Science | 2017

Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences

Alexander Bucksch; Acheampong Atta-Boateng; Akomian F. Azihou; Dorjsuren Battogtokh; Aly Baumgartner; Brad M. Binder; Siobhan A. Braybrook; Cynthia C. Chang; Viktoirya Coneva; Thomas J. DeWitt; Alexander G. Fletcher; Malia A. Gehan; Diego Hernan Diaz-Martinez; Lilan Hong; Anjali S. Iyer-Pascuzzi; Laura L. Klein; Samuel Leiboff; Mao Li; Jonathan P. Lynch; Alexis Maizel; Julin N. Maloof; R.J. Cody Markelz; Ciera C. Martinez; Laura A. Miller; Washington Mio; Wojtek Palubicki; Hendrik Poorter; Christophe Pradal; Charles A. Price; Eetu Puttonen

The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources. In this white paper, we begin with an overview in quantifying the form of plants and mathematical models of patterning in plants. We then explore the fundamental challenges that remain unanswered concerning plant morphology, from the barriers preventing the prediction of phenotype from genotype to modeling the movement of leaves in air streams. We end with a discussion concerning the education of plant morphology synthesizing biological and mathematical approaches and ways to facilitate research advances through outreach, cross-disciplinary training, and open science. Unleashing the potential of geometric and topological approaches in the plant sciences promises to transform our understanding of both plants and mathematics.


Developmental Biology | 2016

A sister of PIN1 gene in tomato (Solanum lycopersicum) defines leaf and flower organ initiation patterns by maintaining epidermal auxin flux

Ciera C. Martinez; Daniel H. Chitwood; Neelima Sinha

The spatiotemporal localization of the plant hormone auxin acts as a positional cue during early leaf and flower organogenesis. One of the main contributors to auxin localization is the auxin efflux carrier PIN-FORMED1 (PIN1). Phylogenetic analysis has revealed that PIN1 genes are split into two sister clades; PIN1 and the relatively uncharacterized Sister-Of-PIN1 (SoPIN1). In this paper we identify entire-2 as a loss-of-function SlSoPIN1a (Solyc10g078370) mutant in Solanum lycopersicum. The entire-2 plants are unable to specify proper leaf initiation leading to a frequent switch from the wild type spiral phyllotactic pattern to distichous and decussate patterns. Leaves in entire-2 are large and less complex and the leaflets display spatial deformities in lamina expansion, vascular development, and margin specification. During sympodial growth in entire-2 the specification of organ position and identity is greatly affected resulting in variable branching patterns on the main sympodial and inflorescence axes. To understand how SlSoPIN1a functions in establishing proper auxin maxima we used the auxin signaling reporter DR5: Venus to visualize differences in auxin localization between entire-2 and wild type. DR5: Venus visualization shows a widening of auxin localization which spreads to subepidermal tissue layers during early leaf and flower organogenesis, showing that SoPIN1 functions to focus auxin signaling to the epidermal layer. The striking spatial deformities observed in entire-2 help provide a mechanistic framework for explaining the function of the SoPIN1 clade in S.lycopersicum.


Philosophical Transactions of the Royal Society B | 2016

Left-right leaf asymmetry in decussate and distichous phyllotactic systems.

Ciera C. Martinez; Daniel H. Chitwood; Richard S. Smith; Neelima Sinha

Leaves in plants with spiral phyllotaxy exhibit directional asymmetries, such that all the leaves originating from a meristem of a particular chirality are similarly asymmetric relative to each other. Models of auxin flux capable of recapitulating spiral phyllotaxis predict handed auxin asymmetries in initiating leaf primordia with empirically verifiable effects on superficially bilaterally symmetric leaves. Here, we extend a similar analysis of leaf asymmetry to decussate and distichous phyllotaxy. We found that our simulation models of these two patterns predicted mirrored asymmetries in auxin distribution in leaf primordia pairs. To empirically verify the morphological consequences of asymmetric auxin distribution, we analysed the morphology of a tomato sister-of-pin-formed1a (sopin1a) mutant, entire-2, in which spiral phyllotaxy consistently transitions to a decussate state. Shifts in the displacement of leaflets on the left and right sides of entire-2 leaf pairs mirror each other, corroborating predicted model results. We then analyse the shape of more than 800 common ivy (Hedera helix) and more than 3000 grapevine (Vitis and Ampelopsis spp.) leaf pairs and find statistical enrichment of predicted mirrored asymmetries. Our results demonstrate that left–right auxin asymmetries in models of decussate and distichous phyllotaxy successfully predict mirrored asymmetric leaf morphologies in superficially symmetric leaves. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’.

Collaboration


Dive into the Ciera C. Martinez's collaboration.

Top Co-Authors

Avatar

Neelima Sinha

University of California

View shared research outputs
Top Co-Authors

Avatar

Daniel H. Chitwood

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aashish Ranjan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ravi Kumar

University of California

View shared research outputs
Top Co-Authors

Avatar

Bernard Prins

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge