Cindee Madison
Helen Wills Neuroscience Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cindee Madison.
Neurology | 2010
Susan M. Landau; Danielle Harvey; Cindee Madison; Eric M. Reiman; Norman L. Foster; Paul S. Aisen; Ronald C. Petersen; Leslie M. Shaw; John Q. Trojanowski; C. R. Jack; Michael W. Weiner; William J. Jagust
Objective: A variety of measurements have been individually linked to decline in mild cognitive impairment (MCI), but the identification of optimal markers for predicting disease progression remains unresolved. The goal of this study was to evaluate the prognostic ability of genetic, CSF, neuroimaging, and cognitive measurements obtained in the same participants. Methods: APOE ε4 allele frequency, CSF proteins (Aβ1-42, total tau, hyperphosphorylated tau [p-tau181p]), glucose metabolism (FDG-PET), hippocampal volume, and episodic memory performance were evaluated at baseline in patients with amnestic MCI (n = 85), using data from a large multisite study (Alzheimers Disease Neuroimaging Initiative). Patients were classified as normal or abnormal on each predictor variable based on externally derived cutoffs, and then variables were evaluated as predictors of subsequent conversion to Alzheimer disease (AD) and cognitive decline (Alzheimers Disease Assessment Scale–Cognitive Subscale) during a variable follow-up period (1.9 ± 0.4 years). Results: Patients with MCI converted to AD at an annual rate of 17.2%. Subjects with MCI who had abnormal results on both FDG-PET and episodic memory were 11.7 times more likely to convert to AD than subjects who had normal results on both measures (p ≤ 0.02). In addition, the CSF ratio p-tau181p/Aβ1-42 (β = 1.10 ± 0.53; p = 0.04) and, marginally, FDG-PET predicted cognitive decline. Conclusions: Baseline FDG-PET and episodic memory predict conversion to AD, whereas p-tau181p/Aβ1-42 and, marginally, FDG-PET predict longitudinal cognitive decline. Complementary information provided by these biomarkers may aid in future selection of patients for clinical trials or identification of patients likely to benefit from a therapeutic intervention.
Neurobiology of Aging | 2011
Susan M. Landau; Danielle Harvey; Cindee Madison; Robert A. Koeppe; Eric M. Reiman; Norman L. Foster; Michael W. Weiner; William J. Jagust
The Functional Activities Questionnaire (FAQ) and Alzheimers Disease Assessment Scale-cognitive subscale (ADAS-cog) are frequently used indices of cognitive decline in Alzheimers disease (AD). The goal of this study was to compare FDG-PET and clinical measurements in a large sample of elderly subjects with memory disturbance. We examined relationships between glucose metabolism in FDG-PET regions of interest (FDG-ROIs), and ADAS-cog and FAQ scores in AD and mild cognitive impairment (MCI) patients enrolled in the Alzheimers Disease Neuroimaging Initiative (ADNI). Low glucose metabolism at baseline predicted subsequent ADAS-cog and FAQ decline. In addition, longitudinal glucose metabolism decline was associated with concurrent ADAS-cog and FAQ decline. Finally, a power analysis revealed that FDG-ROI values have greater statistical power than ADAS-cog to detect attenuation of cognitive decline in AD and MCI patients. Glucose metabolism is a sensitive measure of change in cognition and functional ability in AD and MCI, and has value in predicting future cognitive decline.
Cerebral Cortex | 2011
Elizabeth C. Mormino; Andre Smiljic; Amynta O. Hayenga; Susan H. Onami; Michael D. Greicius; Gil D. Rabinovici; Mustafa Janabi; Suzanne L. Baker; Irene V. Yen; Cindee Madison; Bruce L. Miller; William J. Jagust
Although beta-amyloid (Aβ) deposition is a characteristic feature of Alzheimers disease (AD), this pathology is commonly found in elderly normal controls (NC). The pattern of Aβ deposition as detected with Pittsburgh compound-B positron emission tomography (PIB-PET) imaging shows substantial spatial overlap with the default mode network (DMN), a group of brain regions that typically deactivates during externally driven cognitive tasks. In this study, we show that DMN functional connectivity (FC) during rest is altered with increasing levels of PIB uptake in NC. Specifically, FC decreases were identified in regions implicated in episodic memory (EM) processing (posteromedial cortex, ventral medial prefrontal cortex, and angular gyrus), whereas connectivity increases were detected in dorsal and anterior medial prefrontal and lateral temporal cortices. This pattern of decreases is consistent with previous studies that suggest heightened vulnerability of EM-related brain regions in AD, whereas the observed increases in FC may reflect a compensatory response.
Brain | 2013
Manja Lehmann; Pia Ghosh; Cindee Madison; Robert Laforce; Chiara Corbetta-Rastelli; Michael W. Weiner; Michael D. Greicius; William W. Seeley; Maria Luisa Gorno-Tempini; Howard J. Rosen; Bruce L. Miller; William J. Jagust; Gil D. Rabinovici
The factors driving clinical heterogeneity in Alzheimers disease are not well understood. This study assessed the relationship between amyloid deposition, glucose metabolism and clinical phenotype in Alzheimers disease, and investigated how these relate to the involvement of functional networks. The study included 17 patients with early-onset Alzheimers disease (age at onset <65 years), 12 patients with logopenic variant primary progressive aphasia and 13 patients with posterior cortical atrophy [whole Alzheimers disease group: age = 61.5 years (standard deviation 6.5 years), 55% male]. Thirty healthy control subjects [age = 70.8 (3.3) years, 47% male] were also included. Subjects underwent positron emission tomography with (11)C-labelled Pittsburgh compound B and (18)F-labelled fluorodeoxyglucose. All patients met National Institute on Ageing-Alzheimers Association criteria for probable Alzheimers disease and showed evidence of amyloid deposition on (11)C-labelled Pittsburgh compound B positron emission tomography. We hypothesized that hypometabolism patterns would differ across variants, reflecting involvement of specific functional networks, whereas amyloid patterns would be diffuse and similar across variants. We tested these hypotheses using three complimentary approaches: (i) mass-univariate voxel-wise group comparison of (18)F-labelled fluorodeoxyglucose and (11)C-labelled Pittsburgh compound B; (ii) generation of covariance maps across all subjects with Alzheimers disease from seed regions of interest specifically atrophied in each variant, and comparison of these maps to functional network templates; and (iii) extraction of (11)C-labelled Pittsburgh compound B and (18)F-labelled fluorodeoxyglucose values from functional network templates. Alzheimers disease clinical groups showed syndrome-specific (18)F-labelled fluorodeoxyglucose patterns, with greater parieto-occipital involvement in posterior cortical atrophy, and asymmetric involvement of left temporoparietal regions in logopenic variant primary progressive aphasia. In contrast, all Alzheimers disease variants showed diffuse patterns of (11)C-labelled Pittsburgh compound B binding, with posterior cortical atrophy additionally showing elevated uptake in occipital cortex compared with early-onset Alzheimers disease. The seed region of interest covariance analysis revealed distinct (18)F-labelled fluorodeoxyglucose correlation patterns that greatly overlapped with the right executive-control network for the early-onset Alzheimers disease region of interest, the left language network for the logopenic variant primary progressive aphasia region of interest, and the higher visual network for the posterior cortical atrophy region of interest. In contrast, (11)C-labelled Pittsburgh compound B covariance maps for each region of interest were diffuse. Finally, (18)F-labelled fluorodeoxyglucose was similarly reduced in all Alzheimers disease variants in the dorsal and left ventral default mode network, whereas significant differences were found in the right ventral default mode, right executive-control (both lower in early-onset Alzheimers disease and posterior cortical atrophy than logopenic variant primary progressive aphasia) and higher-order visual network (lower in posterior cortical atrophy than in early-onset Alzheimers disease and logopenic variant primary progressive aphasia), with a trend towards lower (18)F-labelled fluorodeoxyglucose also found in the left language network in logopenic variant primary progressive aphasia. There were no differences in (11)C-labelled Pittsburgh compound B binding between syndromes in any of the networks. Our data suggest that Alzheimers disease syndromes are associated with degeneration of specific functional networks, and that fibrillar amyloid-β deposition explains at most a small amount of the clinico-anatomic heterogeneity in Alzheimers disease.
JAMA Neurology | 2012
Audrey Perrotin; Elizabeth C. Mormino; Cindee Madison; Amynta O. Hayenga; William J. Jagust
OBJECTIVE To study the relationship between subjective cognition and the neuropathological hallmark of Alzheimer disease (AD), amyloid-β (Aβ) deposition, using carbon 11-labeled Pittsburgh Compound B (PiB) positron emission tomography in normal elderly individuals. DESIGN Cross-sectional analysis. SUBJECTS Forty-eight cognitively normal elderly subjects (11 with high PiB uptake and 28 with low PiB uptake) were included. All underwent clinical and neuropsychological evaluations, magnetic resonance imaging, and positron emission tomography. SETTING Berkeley Aging Cohort Study. MAIN OUTCOME MEASURE Relationship between PiB uptake and subjective cognition measures. RESULTS Subjects with high PiB uptake showed significantly lower performance than those with low PiB uptake on an episodic memory measure and were less confident about their general memory abilities when required to evaluate themselves relative to other people of the same age. High and low PiB uptake groups did not differ on the accuracy of their cognitive self-reports compared with objective cognitive performance. General memory self-reports from the whole group were significantly correlated with regional PiB uptake in the right medial prefrontal cortex and anterior cingulate cortex and in the right precuneus and posterior cingulate cortex. Reduced confidence about memory abilities was associated with greater PiB uptake in these brain regions. All results were independent of demographic variables and depressive affects. CONCLUSIONS A decrease of self-confidence about memory abilities in cognitively normal elderly subjects may be related to the neuropathological hallmark of AD measured with PiB-positron emission tomography. Subjective cognitive impairment may represent a very early clinical manifestation of AD.
The Journal of Neuroscience | 2013
Miranka Wirth; Cindee Madison; Gil D. Rabinovici; Hwamee Oh; Susan M. Landau; William J. Jagust
β-Amyloid (Aβ) plaque deposition and neurodegeneration within temporoparietal and hippocampal regions may indicate increased risk of Alzheimers disease (AD). This study examined relationships between AD biomarkers of Aβ and neurodegeneration as well as cognitive performance in cognitively normal older individuals. Aβ burden was quantified in 72 normal older human subjects from the Berkeley Aging Cohort (BAC) using [11C] Pittsburgh compound B (PIB) positron emission tomography. In the same individuals, we measured hippocampal volume, as well as glucose metabolism and cortical thickness, which were extracted from a template of cortical AD-affected regions. The three functional and structural biomarkers were merged into a highly AD-sensitive multimodality biomarker reflecting neural integrity. In the normal older individuals, there was no association between elevated PIB uptake and either the single-modality or the multimodality neurodegenerative biomarkers. Lower neural integrity within the AD-affected regions and a control area (the visual cortex) was related to lower scores on memory and executive function tests; the same association was not found with PIB retention. The relationship between cognition and the multimodality AD biomarker was stronger in individuals with the highest PIB uptake. The findings indicate that neurodegeneration occurs within AD regions regardless of Aβ deposition and accounts for worse cognition in cognitively normal older people. The impact of neural integrity on cognitive functions is, however, enhanced in the presence of high Aβ burden for brain regions that are most affected in AD.
JAMA Neurology | 2013
Miranka Wirth; Sylvia Villeneuve; Claudia M. Haase; Cindee Madison; Hwamee Oh; Susan M. Landau; Gil D. Rabinovici; William J. Jagust
IMPORTANCE Criteria for preclinical Alzheimer disease (AD) propose β-amyloid (Aβ) plaques to initiate neurodegeneration within AD-affected regions. However, some cognitively normal older individuals harbor neural injury similar to patients with AD, without concurrent Aβ burden. Such findings challenge the proposed sequence and suggest that Aβ-independent precursors underlie AD-typical neurodegenerative patterns. OBJECTIVE To examine relationships between Aβ and non-Aβ factors as well as neurodegeneration within AD regions in cognitively normal older adults. The study quantified neurodegenerative abnormalities using imaging biomarkers and examined cross-sectional relationships with Aβ deposition; white matter lesions (WMLs), a marker of cerebrovascular disease; and cognitive functions. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional study in a community-based convenience sample of 72 cognitively normal older individuals (mean [SD] age, 74.9 [5.7] years; 48 women; mean [SD] 17.0 [1.9] years of education) of the Berkeley Aging Cohort. INTERVENTION Each individual underwent a standardized neuropsychological test session, magnetic resonance imaging, and positron emission tomography scanning. MAIN OUTCOMES AND MEASURES For each individual, 3 AD-sensitive neurodegeneration biomarkers were measured: hippocampal volume, glucose metabolism, and gray matter thickness, the latter 2 sampled from cortical AD-affected regions. To quantify neurodegenerative abnormalities, each biomarker was age adjusted, dichotomized into a normal or abnormal status (using cutoff thresholds derived from an independent AD sample), and summarized into 0, 1, or more than 1 abnormal neurodegenerative biomarker. Degree and topographic patterns of neurodegenerative abnormalities were assessed and their relationships with cognitive functions, WML volume, and Aβ deposition (quantified using carbon 11-labeled Pittsburgh compound B positron emission tomography). RESULTS Of our cognitively normal elderly individuals, 40% (n = 29) displayed at least 1 abnormal neurodegenerative biomarker, 26% (n = 19) of whom had no evidence of elevated Pittsburgh compound B retention. In those people who were classified as having abnormal cortical thickness, degree and topographic specificity of neurodegenerative abnormalities were similar to patients with AD. Accumulation of neurodegenerative abnormalities was related to poor memory and executive functions as well as larger WML volumes but not elevated Pittsburgh compound B retention. CONCLUSIONS AND RELEVANCE Our study confirms that a substantial proportion of cognitively normal older adults harbor neurodegeneration, without Aβ burden. Associations of neurodegenerative abnormalities with cerebrovascular disease and cognitive performance indicate that neurodegenerative pathology can emerge through non-Aβ pathways within regions most affected by AD.
Neurology | 2011
M.H. Rosenbloom; Adi Alkalay; Neha Agarwal; Suzanne L. Baker; James P. O'Neil; Mustafa Janabi; I.V. Yen; Matthew E. Growdon; Jung Y. Jang; Cindee Madison; Elizabeth C. Mormino; Howie Rosen; Maria Luisa Gorno-Tempini; M. W. Weiner; Bruce L. Miller; William J. Jagust; Gil D. Rabinovici
Background/Objective: Patients with posterior cortical atrophy (PCA) often have Alzheimer disease (AD) at autopsy, yet are cognitively and anatomically distinct from patients with clinical AD. We sought to compare the distribution of β-amyloid and glucose metabolism in PCA and AD in vivo using Pittsburgh compound B (PiB) and FDG-PET. Methods: Patients with PCA (n = 12, age 57.5 ± 7.4, Mini-Mental State Examination [MMSE] 22.2 ± 5.1), AD (n = 14, age 58.8 ± 9.6, MMSE 23.8 ± 6.7), and cognitively normal controls (NC, n = 30, age 73.6 ± 6.4) underwent PiB and FDG-PET. Group differences in PiB distribution volume ratios (DVR, cerebellar reference) and FDG uptake (pons-averaged) were assessed on a voxel-wise basis and by comparing binding in regions of interest (ROIs). Results: Compared to NC, both patients with AD and patients with PCA showed diffuse PiB uptake throughout frontal, temporoparietal, and occipital cortex (p < 0.0001). There were no regional differences in PiB binding between PCA and AD even after correcting for atrophy. FDG patterns in PCA and AD were distinct: while both groups showed hypometabolism compared to NC in temporoparietal cortex and precuneus/posterior cingulate, patients with PCA further showed hypometabolism in inferior occipitotemporal cortex compared to both NC and patients with AD (p < 0.05). Patients with AD did not show areas of relative hypometabolism compared to PCA. Conclusions: Fibrillar amyloid deposition in PCA is diffuse and similar to AD, while glucose hypometabolism extends more posteriorly into occipital cortex. Further studies are needed to determine the mechanisms of selective network degeneration in focal variants of AD.
Brain | 2015
Sylvia Villeneuve; Gil D. Rabinovici; Brendan I. Cohn-Sheehy; Cindee Madison; Nagehan Ayakta; Pia Ghosh; Renaud La Joie; Samia Kate Arthur-Bentil; Jacob W. Vogel; Shawn M. Marks; Manja Lehmann; Howard J. Rosen; Bruce Reed; John Olichney; Adam L. Boxer; Bruce L. Miller; Ewa Borys; Lee Way Jin; Eric J. Huang; Lea T. Grinberg; Charles DeCarli; William W. Seeley; William J. Jagust
Amyloid-β, a hallmark of Alzheimers disease, begins accumulating up to two decades before the onset of dementia, and can be detected in vivo applying amyloid-β positron emission tomography tracers such as carbon-11-labelled Pittsburgh compound-B. A variety of thresholds have been applied in the literature to define Pittsburgh compound-B positron emission tomography positivity, but the ability of these thresholds to detect early amyloid-β deposition is unknown, and validation studies comparing Pittsburgh compound-B thresholds to post-mortem amyloid burden are lacking. In this study we first derived thresholds for amyloid positron emission tomography positivity using Pittsburgh compound-B positron emission tomography in 154 cognitively normal older adults with four complementary approaches: (i) reference values from a young control group aged between 20 and 30 years; (ii) a Gaussian mixture model that assigned each subject a probability of being amyloid-β-positive or amyloid-β-negative based on Pittsburgh compound-B index uptake; (iii) a k-means cluster approach that clustered subjects into amyloid-β-positive or amyloid-β-negative based on Pittsburgh compound-B uptake in different brain regions (features); and (iv) an iterative voxel-based analysis that further explored the spatial pattern of early amyloid-β positron emission tomography signal. Next, we tested the sensitivity and specificity of the derived thresholds in 50 individuals who underwent Pittsburgh compound-B positron emission tomography during life and brain autopsy (mean time positron emission tomography to autopsy 3.1 ± 1.8 years). Amyloid at autopsy was classified using Consortium to Establish a Registry for Alzheimers Disease (CERAD) criteria, unadjusted for age. The analytic approaches yielded low thresholds (standard uptake value ratiolow = 1.21, distribution volume ratiolow = 1.08) that represent the earliest detectable Pittsburgh compound-B signal, as well as high thresholds (standard uptake value ratiohigh = 1.40, distribution volume ratiohigh = 1.20) that are more conservative in defining Pittsburgh compound-B positron emission tomography positivity. In voxel-wise contrasts, elevated Pittsburgh compound-B retention was first noted in the medial frontal cortex, then the precuneus, lateral frontal and parietal lobes, and finally the lateral temporal lobe. When compared to post-mortem amyloid burden, low proposed thresholds were more sensitive than high thresholds (sensitivities: distribution volume ratiolow 81.0%, standard uptake value ratiolow 83.3%; distribution volume ratiohigh 61.9%, standard uptake value ratiohigh 62.5%) for CERAD moderate-to-frequent neuritic plaques, with similar specificity (distribution volume ratiolow 95.8%; standard uptake value ratiolow, distribution volume ratiohigh and standard uptake value ratiohigh 100.0%). A receiver operator characteristic analysis identified optimal distribution volume ratio (1.06) and standard uptake value ratio (1.20) thresholds that were nearly identical to the a priori distribution volume ratiolow and standard uptake value ratiolow. In summary, we found that frequently applied thresholds for Pittsburgh compound-B positivity (typically at or above distribution volume ratiohigh and standard uptake value ratiohigh) are overly stringent in defining amyloid positivity. Lower thresholds in this study resulted in higher sensitivity while not compromising specificity.
JAMA Neurology | 2013
Natalie L. Marchant; Bruce Reed; Nerses Sanossian; Cindee Madison; Stephen Kriger; Roxana Dhada; Wendy J. Mack; Charles DeCarli; Michael W. Weiner; Dan Mungas; Helena C. Chui; William J. Jagust
IMPORTANCE β-Amyloid (Aβ) deposition and vascular brain injury (VBI) frequently co-occur and are both associated with cognitive decline in aging. Determining whether a direct relationship exists between them has been challenging. We sought to understand VBIs influence on cognition and clinical impairment, separate from and in conjunction with pathologic changes associated with Alzheimer disease (AD). OBJECTIVE To examine the relationship between neuroimaging measures of VBI and brain Aβ deposition and their associations with cognition. DESIGN AND SETTING A cross-sectional study in a community- and clinic-based sample recruited for elevated vascular disease risk factors. PARTICIPANTS Clinically normal (mean age, 77.1 years [N = 30]), cognitively impaired (mean age, 78.0 years [N = 24]), and mildly demented (mean age, 79.8 years [N = 7]) participants. INTERVENTIONS Magnetic resonance imaging, Aβ (Pittsburgh Compound B-positron emission tomographic [PiB-PET]) imaging, and cognitive testing. MAIN OUTCOME MEASURES Magnetic resonance images were rated for the presence and location of infarct (34 infarct-positive participants, 27 infarct-negative participants) and were used to quantify white matter lesion volume. The PiB-PET uptake ratios were used to create a PiB index by averaging uptake across regions vulnerable to early Aβ deposition; PiB positivity (29 PiB-positive participants, 32 PiB-negative participants) was determined from a data-derived threshold. Standardized composite cognitive measures included executive function and verbal and nonverbal memory. RESULTS Vascular brain injury and Aβ were independent in both cognitively normal and impaired participants. Infarction, particularly in cortical and subcortical gray matter, was associated with lower cognitive performance in all domains (P < .05 for all comparisons). Pittsburgh Compound B positivity was neither a significant predictor of cognition nor interacted with VBI. CONCLUSIONS AND RELEVANCE In this elderly sample with normal cognition to mild dementia, enriched for vascular disease, VBI was more influential than Aβ in contemporaneous cognitive function and remained predictive after including the possible influence of Aβ. There was no evidence that VBI increases the likelihood of Aβ deposition. This finding highlights the importance of VBI in mild cognitive impairment and suggests that the impact of cerebrovascular disease should be considered with respect to defining the etiology of mild cognitive impairment.