Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cindy Buffone is active.

Publication


Featured researches published by Cindy Buffone.


Journal of Virology | 2015

Restriction of HIV-1 Requires the N-Terminal Region of MxB as a Capsid-Binding Motif but Not as a Nuclear Localization Signal

Bianca Schulte; Cindy Buffone; Silvana Opp; Francesca Di Nunzio; Daniel A. S. A. Vieira; Alberto Brandariz-Nuñez; Felipe Diaz-Griffero

ABSTRACT The interferon alpha (IFN-α)-inducible restriction factor MxB blocks HIV-1 infection after reverse transcription but prior to integration. Fate-of-capsid experiments have correlated the ability of MxB to block HIV-1 infection with stabilization of viral cores during infection. We previously demonstrated that HIV-1 restriction by MxB requires capsid binding and oligomerization. Deletion and gain-of-function experiments have mapped the HIV-1 restriction ability of MxB to its N-terminal 25 amino acids. This report reveals that the N-terminal 25 amino acids of MxB exhibit two separate functions: (i) the ability of MxB to bind to HIV-1 capsid and (ii) the nuclear localization signal of MxB, which is important for the ability of MxB to shuttle into the nucleus. To understand whether MxB restriction of HIV-1 requires capsid binding and/or nuclear localization, we genetically separated these two functions and evaluated their contributions to restriction. Our experiments demonstrated that the 11RRR13 motif is important for the ability of MxB to bind capsid and to restrict HIV-1 infection. These experiments suggested that capsid binding is necessary for the ability of MxB to block HIV-1 infection. Separately from the capsid binding function of MxB, we found that residues 20KY21 regulate the ability of the N-terminal 25 amino acids of MxB to function as a nuclear localization signal; however, the ability of the N-terminal 25 amino acids to function as a nuclear localization signal was not required for restriction. IMPORTANCE MxB/Mx2 blocks HIV-1 infection in cells from the immune system. MxB blocks infection by preventing the uncoating process of HIV-1. The ability of MxB to block HIV-1 infection requires that MxB binds to the HIV-1 core by using its N-terminal domain. The present study shows that MxB uses residues 11RRR13 to bind to the HIV-1 core during infection and that these residues are required for the ability of MxB to block HIV-1 infection. We also found that residues 20KY21 constitute a nuclear localization signal that is not required for the ability of MxB to block HIV-1 infection.


Retrovirology | 2014

BI-2 destabilizes HIV-1 cores during infection and Prevents Binding of CPSF6 to the HIV-1 Capsid

Thomas Fricke; Cindy Buffone; Silvana Opp; Jose Carlos Valle-Casuso; Felipe Diaz-Griffero

BackgroundThe recently discovered small-molecule BI-2 potently blocks HIV-1 infection. BI-2 binds to the N-terminal domain of HIV-1 capsid. BI-2 utilizes the same capsid pocket used by the small molecule PF74. Although both drugs bind to the same pocket, it has been proposed that BI-2 uses a different mechanism to block HIV-1 infection when compared to PF74.FindingsThis work demonstrates that BI-2 destabilizes the HIV-1 core during infection, and prevents the binding of the cellular factor CPSF6 to the HIV-1 core.ConclusionsOverall this short-form paper suggests that BI-2 is using a similar mechanism to the one used by PF74 to block HIV-1 infection.


Scientific Reports | 2016

Effects of T592 phosphomimetic mutations on tetramer stability and dNTPase activity of SAMHD1 can not explain the retroviral restriction defect

Akash Bhattacharya; Zhonghua Wang; Tommy E. White; Cindy Buffone; Laura A. Nguyen; Caitlin Shepard; Baek Kim; Borries Demeler; Felipe Diaz-Griffero; Dmitri Ivanov

SAMHD1, a dNTP triphosphohydrolase, contributes to interferon signaling and restriction of retroviral replication. SAMHD1-mediated retroviral restriction is thought to result from the depletion of cellular dNTP pools, but it remains controversial whether the dNTPase activity of SAMHD1 is sufficient for restriction. The restriction ability of SAMHD1 is regulated in cells by phosphorylation on T592. Phosphomimetic mutations of T592 are not restriction competent, but appear intact in their ability to deplete cellular dNTPs. Here we use analytical ultracentrifugation, fluorescence polarization and NMR-based enzymatic assays to investigate the impact of phosphomimetic mutations on SAMHD1 tetramerization and dNTPase activity in vitro. We find that phosphomimetic mutations affect kinetics of tetramer assembly and disassembly, but their effects on tetramerization equilibrium and dNTPase activity are insignificant. In contrast, the Y146S/Y154S dimerization-defective mutant displays a severe dNTPase defect in vitro, but is indistinguishable from WT in its ability to deplete cellular dNTP pools and to restrict HIV replication. Our data suggest that the effect of T592 phosphorylation on SAMHD1 tetramerization is not likely to explain the retroviral restriction defect, and we hypothesize that enzymatic activity of SAMHD1 is subject to additional cellular regulatory mechanisms that have not yet been recapitulated in vitro.


Antimicrobial Agents and Chemotherapy | 2016

Ebselen, a Small-Molecule Capsid Inhibitor of HIV-1 Replication

Suzie Thenin-Houssier; Ian Mitchelle S. de Vera; Laura Pedro-Rosa; Angela Brady; Audrey Stéphanie Richard; Briana Konnick; Silvana Opp; Cindy Buffone; Jakob Fuhrmann; Smitha Kota; Blase Billack; Magdalena Piętka-Ottlik; Timothy L. Tellinghuisen; Hyeryun Choe; Timothy P. Spicer; Louis Scampavia; Felipe Diaz-Griffero; Douglas J. Kojetin; Susana T. Valente

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) capsid plays crucial roles in HIV-1 replication and thus represents an excellent drug target. We developed a high-throughput screening method based on a time-resolved fluorescence resonance energy transfer (HTS-TR-FRET) assay, using the C-terminal domain (CTD) of HIV-1 capsid to identify inhibitors of capsid dimerization. This assay was used to screen a library of pharmacologically active compounds, composed of 1,280 in vivo-active drugs, and identified ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], an organoselenium compound, as an inhibitor of HIV-1 capsid CTD dimerization. Nuclear magnetic resonance (NMR) spectroscopic analysis confirmed the direct interaction of ebselen with the HIV-1 capsid CTD and dimer dissociation when ebselen is in 2-fold molar excess. Electrospray ionization mass spectrometry revealed that ebselen covalently binds the HIV-1 capsid CTD, likely via a selenylsulfide linkage with Cys198 and Cys218. This compound presents anti-HIV activity in single and multiple rounds of infection in permissive cell lines as well as in primary peripheral blood mononuclear cells. Ebselen inhibits early viral postentry events of the HIV-1 life cycle by impairing the incoming capsid uncoating process. This compound also blocks infection of other retroviruses, such as Moloney murine leukemia virus and simian immunodeficiency virus, but displays no inhibitory activity against hepatitis C and influenza viruses. This study reports the use of TR-FRET screening to successfully identify a novel capsid inhibitor, ebselen, validating HIV-1 capsid as a promising target for drug development.


Journal of Virology | 2015

Contribution of MxB Oligomerization to HIV-1 Capsid Binding and Restriction

Cindy Buffone; Bianca Schulte; Silvana Opp; Felipe Diaz-Griffero

ABSTRACT The alpha interferon (IFN-α)-inducible restriction factor myxovirus B (MxB) blocks HIV-1 infection after reverse transcription but prior to integration. MxB binds to the HIV-1 core, which is composed of capsid protein, and this interaction leads to inhibition of the uncoating process of HIV-1. Previous studies suggested that HIV-1 restriction by MxB requires binding to capsid. This work tests the hypothesis that MxB oligomerization is important for the ability of MxB to bind to the HIV-1 core. For this purpose, we modeled the structure of MxB using the published tertiary structure of MxA. The modeled structure of MxB guided our mutagenic studies and led to the discovery of several MxB variants that lose the capacity to oligomerize. In agreement with our hypothesis, MxB variants that lost the oligomerization capacity also lost the ability to bind to the HIV-1 core. MxB variants deficient for oligomerization were not able to block HIV-1 infection. Overall, our work showed that oligomerization is required for the ability of MxB to bind to the HIV-1 core and block HIV-1 infection. IMPORTANCE MxB is a novel restriction factor that blocks infection of HIV-1. MxB is inducible by IFN-α, particularly in T cells. The current work studies the oligomerization determinants of MxB and carefully explores the contribution of oligomerization to capsid binding and restriction. This work takes advantage of the current structure of MxA and models the structure of MxB, which is used to guide structure-function studies. This work leads to the conclusion that MxB oligomerization is important for HIV-1 capsid binding and restriction.


Retrovirology | 2016

HIV-1 capsid is involved in post-nuclear entry steps

Nan-Yu Chen; Lihong Zhou; Paul J. Gane; Silvana Opp; Neil J. Ball; Giuseppe Nicastro; Madeleine Zufferey; Cindy Buffone; Jeremy Luban; David L. Selwood; Felipe Diaz-Griffero; Ian A. Taylor; Ariberto Fassati

BackgroundHIV-1 capsid influences viral uncoating and nuclear import. Some capsid is detected in the nucleus but it is unclear if it has any function. We reported that the antibiotic Coumermycin-A1 (C-A1) inhibits HIV-1 integration and that a capsid mutation confers resistance to C-A1, suggesting that capsid might affect post-nuclear entry steps.ResultsHere we report that C-A1 inhibits HIV-1 integration in a capsid-dependent way. Using molecular docking, we identify an extended binding pocket delimited by two adjacent capsid monomers where C-A1 is predicted to bind. Isothermal titration calorimetry confirmed that C-A1 binds to hexameric capsid. Cyclosporine washout assays in Jurkat CD4+ T cells expressing engineered human TRIMCyp showed that C-A1 causes faster and greater escape from TRIMCyp restriction. Sub-cellular fractionation showed that small amounts of capsid accumulated in the nuclei of infected cells and C-A1 reduced the nuclear capsid. A105S and N74D capsid mutant viruses did not accumulate capsid in the nucleus, irrespective of C-A1 treatment. Depletion of Nup153, a nucleoporin located at the nuclear side of the nuclear pore that binds to HIV-1 capsid, made the virus less susceptible to TRIMCyp restriction, suggesting that Nup153 may help maintain some integrity of the viral core in the nucleus. Furthermore C-A1 increased binding of CPSF6, a nuclear protein, to capsid.ConclusionsOur results indicate that capsid is involved in post-nuclear entry steps preceding integration.


Virology | 2018

Infection by Zika viruses requires the transmembrane protein AXL, endocytosis and low pH

Mirjana Persaud; Alicia Martinez-Lopez; Cindy Buffone; Steven A. Porcelli; Felipe Diaz-Griffero

The recent Zika virus (ZIKV) outbreak in Brazil has suggested associations of this virus infection with neurological disorders, including microcephaly in newborn infants and Guillian-Barré syndrome in adults. Previous reports have shown that AXL, a transmembrane receptor tyrosine kinase protein, is essential for ZIKV infection of mammalian cells, but this remains controversial. Here, we have assessed the involvement of AXL in the ability of ZIKV to infect mammalian cells, and also the requirement for endocytosis and acidic pH. We demonstrated that AXL is essential for ZIKV infection of human fibroblast cell line HT1080 as the targeted deletion of the gene for AXL in HT1080 cells made them no longer susceptible to ZIKV infection. Our results also showed that infection was prevented by lysosomotropic agents such as ammonium chloride, chloroquine and bafilomycin A1, which neutralize the normally acidic pH of endosomal compartments. Infection by ZIKV was also blocked by chlorpromazine, indicating a requirement for clathrin-mediated endocytosis. Taken together, our findings suggest that AXL most likely serves as an attachment factor for ZIKV on the cell surface, and that productive infection requires endocytosis and delivery of the virus to acidified intracellular compartments.


Cell Reports | 2018

Functionality of Redox-Active Cysteines Is Required for Restriction of Retroviral Replication by SAMHD1

Zhonghua Wang; Akash Bhattacharya; Tommy E. White; Cindy Buffone; Aine McCabe; Laura A. Nguyen; Caitlin Shepard; Sammy Pardo; Baek Kim; Susan T. Weintraub; Borries Demeler; Felipe Diaz-Griffero; Dmitri Ivanov

SUMMARY SAMHD1 is a dNTP triphosphohydrolase (dNTPase) that impairs retroviral replication in a subset of noncycling immune cells. Here we show that SAMHD1 is a redox-sensitive enzyme and identify three redox-active cysteines within the protein: C341, C350, and C522. The three cysteines reside near one another and the allosteric nucleotide binding site. Mutations C341S and C522S abolish the ability of SAMHD1 to restrict HIV replication, whereas the C350S mutant remains restriction competent. The C522S mutation makes the protein resistant to inhibition by hydrogen peroxide but has no effect on the tetramerization-dependent dNTPase activity of SAMHD1 in vitro or on the ability of SAMHD1 to deplete cellular dNTPs. Our results reveal that enzymatic activation of SAMHD1 via nucleotide-dependent tetramerization is not sufficient for the establishment of the antiviral state and that retroviral restriction depends on the ability of the protein to undergo redox transformations.


Archive | 2018

Nup153 Unlocks the Nuclear Pore Complex for HIV-1 Nuclear Import in Non-Dividing Cells

Silvana Opp; Alicia Martinez-Lopez; Thomas Fricke; Cindy Buffone; Marco Severgnini; Ingrid Cifola; Stella Frabetti; Katarzyna Skorupka; Kaneil K. Zadrozny; Barbie K. Ganser-Pornillos; Owen Pornillos; Francesca Di Nunzio; Felipe Diaz-Griffero


Journal of Virology | 2018

Nup153 Unlocks the Nuclear Pore Complex for HIV-1 Nuclear Translocation in Nondividing Cells

Cindy Buffone; Alicia Martinez-Lopez; Thomas Fricke; Silvana Opp; Marco Severgnini; Ingrid Cifola; Luca Petiti; Stella Frabetti; Katarzyna Skorupka; Kaneil K. Zadrozny; Barbie K. Ganser-Pornillos; Owen Pornillos; Francesca Di Nunzio; Felipe Diaz-Griffero

Collaboration


Dive into the Cindy Buffone's collaboration.

Top Co-Authors

Avatar

Felipe Diaz-Griffero

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Silvana Opp

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bianca Schulte

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Thomas Fricke

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Akash Bhattacharya

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Borries Demeler

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge