Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cindy J. Smith is active.

Publication


Featured researches published by Cindy J. Smith.


Applied and Environmental Microbiology | 2007

Diversity and Abundance of Nitrate Reductase Genes (narG and napA), Nitrite Reductase Genes (nirS and nrfA), and Their Transcripts in Estuarine Sediments

Cindy J. Smith; David B. Nedwell; Liang F. Dong; A. Mark Osborn

ABSTRACT Estuarine systems are the major conduits for the transfer of nitrate from agricultural and other terrestrial-anthropogenic sources into marine ecosystems. Within estuarine sediments some microbially driven processes (denitrification and anammox) result in the net removal of nitrogen from the environment, while others (dissimilatory nitrate reduction to ammonium) do not. In this study, molecular approaches have been used to investigate the diversity, abundance, and activity of the nitrate-reducing communities in sediments from the hypernutrified Colne estuary, United Kingdom, via analysis of nitrate and nitrite reductase genes and transcripts. Sequence analysis of cloned PCR-amplified narG, napA, and nrfA gene sequences showed the indigenous nitrate-reducing communities to be both phylogenetically diverse and also divergent from previously characterized nitrate reduction sequences in soils and offshore marine sediments and from cultured nitrate reducers. In both the narG and nrfA libraries, the majority of clones (48% and 50%, respectively) were related to corresponding sequences from delta-proteobacteria. A suite of quantitative PCR primers and TaqMan probes was then developed to quantify phylotype-specific nitrate (narG and napA) and nitrite reductase (nirS and nrfA) gene and transcript numbers in sediments from three sites along the estuarine nitrate gradient. In general, both nitrate and nitrite reductase gene copy numbers were found to decline significantly (P < 0.05) from the estuary head towards the estuary mouth. The development and application, for the first time, of quantitative reverse transcription-PCR assays to quantify mRNA sequences in sediments revealed that transcript numbers for three of the five phylotypes quantified were greatest at the estuary head.


Applied and Environmental Microbiology | 2009

Changes in benthic denitrification, nitrate ammonification, and anammox process rates and nitrate and nitrite reductase gene abundances along an estuarine nutrient gradient (the Colne estuary, United Kingdom).

Liang F. Dong; Cindy J. Smith; Sokratis Papaspyrou; Andrew W. Stott; A. Mark Osborn; David B. Nedwell

ABSTRACT Estuarine sediments are the location for significant bacterial removal of anthropogenically derived inorganic nitrogen, in particular nitrate, from the aquatic environment. In this study, rates of benthic denitrification (DN), dissimilatory nitrate reduction to ammonium (DNRA), and anammox (AN) at three sites along a nitrate concentration gradient in the Colne estuary, United Kingdom, were determined, and the numbers of functional genes (narG, napA, nirS, and nrfA) and corresponding transcripts encoding enzymes mediating nitrate reduction were determined by reverse transcription-quantitative PCR. In situ rates of DN and DNRA decreased toward the estuary mouth, with the findings from slurry experiments suggesting that the potential for DNRA increased while the DN potential decreased as nitrate concentrations declined. AN was detected only at the estuary head, accounting for ∼30% of N2 formation, with 16S rRNA genes from anammox-related bacteria also detected only at this site. Numbers of narG genes declined along the estuary, while napA gene numbers were stable, suggesting that NAP-mediated nitrate reduction remained important at low nitrate concentrations. nirS gene numbers (as indicators of DN) also decreased along the estuary, whereas nrfA (an indicator for DNRA) was detected only at the two uppermost sites. Similarly, nitrate and nitrite reductase gene transcripts were detected only at the top two sites. A regression analysis of log(n + 1) process rate data and log(n + 1) mean gene abundances showed significant relationships between DN and nirS and between DNRA and nrfA. Although these log-log relationships indicate an underlying relationship between the genetic potential for nitrate reduction and the corresponding process activity, fine-scale environmentally induced changes in rates of nitrate reduction are likely to be controlled at cellular and protein levels.


Applied and Environmental Microbiology | 2007

Diatom-derived carbohydrates as factors affecting bacterial community composition in estuarine sediments

Kelly Haynes; Tanja A. Hofmann; Cindy J. Smith; Andrew S. Ball; Graham J. C. Underwood; A. Mark Osborn

ABSTRACT Microphytobenthic biofilms in estuaries, dominated by epipelic diatoms, are sites of high primary productivity. These diatoms exude large quantities of extracellular polymeric substances (EPS) comprising polysaccharides and glycoproteins, providing a substantial pool of organic carbon available to heterotrophs within the sediment. In this study, sediment slurry microcosms were enriched with either colloidal carbohydrates or colloidal EPS (cEPS) or left unamended. Over 10 days, the fate of these carbohydrates and changes in β-glucosidase activity were monitored. Terminal restriction fragment length polymorphism (T-RFLP), DNA sequencing, and quantitative PCR (Q-PCR) analysis of 16S rRNA sequences were used to determine whether sediment bacterial communities exhibited compositional shifts in response to the different available carbon sources. Initial heterotrophic activity led to reductions in carbohydrate concentrations in all three microcosms from day 0 to day 2, with some increases in β-glucosidase activity. During this period, treatment-specific shifts in bacterial community composition were not observed. However, by days 4 and 10, the bacterial community in the cEPS-enriched sediment diverged from those in colloid-enriched and unamended sediments, with Q-PCR analysis showing elevated bacterial numbers in the cEPS-enriched sediment at day 4. Community shifts were attributed to changes in cEPS concentrations and increased β-glucosidase activity. T-RFLP and sequencing analyses suggested that this shift was not due to a total community response but rather to large increases in the relative abundance of members of the γ-proteobacteria, particularly Acinetobacter-related bacteria. These experiments suggest that taxon- and substrate-specific responses within the bacterial community are involved in the degradation of diatom-derived extracellular carbohydrates.


The ISME Journal | 2010

Bioturbating shrimp alter the structure and diversity of bacterial communities in coastal marine sediments

Bonnie Laverock; Cindy J. Smith; Karen Tait; A. Mark Osborn; Steve Widdicombe; Jack A. Gilbert

Bioturbation is a key process in coastal sediments, influencing microbially driven cycling of nutrients as well as the physical characteristics of the sediment. However, little is known about the distribution, diversity and function of the microbial communities that inhabit the burrows of infaunal macroorganisms. In this study, terminal-restriction fragment length polymorphism analysis was used to investigate variation in the structure of bacterial communities in sediment bioturbated by the burrowing shrimp Upogebia deltaura or Callianassa subterranea. Analyses of 229 sediment samples revealed significant differences between bacterial communities inhabiting shrimp burrows and those inhabiting ambient surface and subsurface sediments. Bacterial communities in burrows from both shrimp species were more similar to those in surface-ambient than subsurface-ambient sediment (R=0.258, P<0.001). The presence of shrimp was also associated with changes in bacterial community structure in surrounding surface sediment, when compared with sediments uninhabited by shrimp. Bacterial community structure varied with burrow depth, and also between individual burrows, suggesting that the shrimps burrow construction, irrigation and maintenance behaviour affect the distribution of bacteria within shrimp burrows. Subsequent sequence analysis of bacterial 16S rRNA genes from surface sediments revealed differences in the relative abundance of bacterial taxa between shrimp-inhabited and uninhabited sediments; shrimp-inhabited sediment contained a higher proportion of proteobacterial sequences, including in particular a twofold increase in Gammaproteobacteria. Chao1 and ACE diversity estimates showed that taxon richness within surface bacterial communities in shrimp-inhabited sediment was at least threefold higher than that in uninhabited sediment. This study shows that bioturbation can result in significant structural and compositional changes in sediment bacterial communities, increasing bacterial diversity in surface sediments and resulting in distinct bacterial communities even at depth within the burrow. In an area of high macrofaunal abundance, this could lead to alterations in the microbial transformations of important nutrients at the sediment–water interface.


Frontiers in Microbiology | 2015

Seasonal variation in denitrification and dissimilatory nitrate reduction to ammonia process rates and corresponding key functional genes along an estuarine nitrate gradient

Cindy J. Smith; Liang F. Dong; John Wilson; Andrew W. Stott; A. Mark Osborn; David B. Nedwell

This research investigated spatial-temporal variation in benthic bacterial community structure, rates of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) processes and abundances of corresponding genes and transcripts at three sites—the estuary-head, mid-estuary and the estuary mouth (EM) along the nitrate gradient of the Colne estuary over an annual cycle. Denitrification rates declined down the estuary, while DNRA rates were higher at the estuary head and middle than the EM. In four out of the six 2-monthly time-points, rates of DNRA were greater than denitrification at each site. Abundance of gene markers for nitrate-reduction (nitrate reductase narG and napA), denitrification (nitrite reductase nirS) and DNRA (DNRA nitrite reductase nrfA) declined along the estuary with significant relationships between denitrification and nirS abundance, and DNRA and nrfA abundance. Spatially, rates of denitrification, DNRA and corresponding functional gene abundances decreased along the estuary. However, temporal correlations between rate processes and functional gene and transcript abundances were not observed.


PLOS ONE | 2014

Nitrate reduction functional genes and nitrate reduction potentials persist in deeper estuarine sediments why

Sokratis Papaspyrou; Cindy J. Smith; Liang F. Dong; Corinne Whitby; Alex J. Dumbrell; David B. Nedwell

Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are processes occurring simultaneously under oxygen-limited or anaerobic conditions, where both compete for nitrate and organic carbon. Despite their ecological importance, there has been little investigation of how denitrification and DNRA potentials and related functional genes vary vertically with sediment depth. Nitrate reduction potentials measured in sediment depth profiles along the Colne estuary were in the upper range of nitrate reduction rates reported from other sediments and showed the existence of strong decreasing trends both with increasing depth and along the estuary. Denitrification potential decreased along the estuary, decreasing more rapidly with depth towards the estuary mouth. In contrast, DNRA potential increased along the estuary. Significant decreases in copy numbers of 16S rRNA and nitrate reducing genes were observed along the estuary and from surface to deeper sediments. Both metabolic potentials and functional genes persisted at sediment depths where porewater nitrate was absent. Transport of nitrate by bioturbation, based on macrofauna distributions, could only account for the upper 10 cm depth of sediment. A several fold higher combined freeze-lysable KCl-extractable nitrate pool compared to porewater nitrate was detected. We hypothesised that his could be attributed to intracellular nitrate pools from nitrate accumulating microorganisms like Thioploca or Beggiatoa. However, pyrosequencing analysis did not detect any such organisms, leaving other bacteria, microbenthic algae, or foraminiferans which have also been shown to accumulate nitrate, as possible candidates. The importance and bioavailability of a KCl-extractable nitrate sediment pool remains to be tested. The significant variation in the vertical pattern and abundance of the various nitrate reducing genes phylotypes reasonably suggests differences in their activity throughout the sediment column. This raises interesting questions as to what the alternative metabolic roles for the various nitrate reductases could be, analogous to the alternative metabolic roles found for nitrite reductases.


Frontiers in Microbiology | 2016

Biological Phosphorus Removal During High-Rate, Low-Temperature, Anaerobic Digestion of Wastewater.

Ciara Keating; Jason P. Chin; Dermot Hughes; Panagiotis Manesiotis; Denise Cysneiros; Thérèse Mahony; Cindy J. Smith; John W. McGrath; Vincent O’Flaherty

We report, for the first time, extensive biologically mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis revealed the accumulation of elemental phosphorus (∼2%) within the sludge bed and fixed-film biofilms. 4′, 6-diamidino-2-phenylindole (DAPI) staining indicated phosphorus accumulation was biological in nature and mediated through the formation of intracellular inorganic polyphosphate (polyP) granules within these biofilms. DAPI staining further indicated that polyP accumulation was rarely associated with free cells. Efficient and consistent chemical oxygen demand (COD) removal was recorded, throughout the 732-day trial, at applied organic loading rates between 0.4 and 1.5 kg COD m-3 d-1 and hydraulic retention times of 8–24 h, while phosphate removal efficiency ranged from 28 to 78% on average per phase. Analysis of protein hydrolysis kinetics and the methanogenic activity profiles of the biomass revealed the development, at 12°C, of active hydrolytic and methanogenic populations. Temporal microbial changes were monitored using Illumina MiSeq analysis of bacterial and archaeal 16S rRNA gene sequences. The dominant bacterial phyla present in the biomass at the conclusion of the trial were the Proteobacteria and Firmicutes and the dominant archaeal genus was Methanosaeta. Trichococcus and Flavobacterium populations, previously associated with low temperature protein degradation, developed in the reactor biomass. The presence of previously characterized polyphosphate accumulating organisms (PAOs) such as Rhodocyclus, Chromatiales, Actinobacter, and Acinetobacter was recorded at low numbers. However, it is unknown as yet if these were responsible for the luxury polyP uptake observed in this system. The possibility of efficient phosphate removal and recovery from wastewater during AD would represent a major advance in the scope for widespread application of anaerobic wastewater treatment technologies.


Archive | 2015

Real-time PCR approaches for analysis of hydrocarbon-degrading bacterial communities

Boyd A. McKew; Cindy J. Smith

Since the development of the polymerase chain reaction (PCR) in the 1980s our knowledge of environmental microbial diversity and function has increased greatly. However quantification of particular environmental microbes by “end-point PCR” techniques has typically been inaccurate due to inherent limitations and biases introduced during amplification. Such problems were overcome in the 1990s following the development of “real-time PCR” methods that employ highly sensitive fluorescent detection chemistries that allow quantification of PCR amplicons during the exponential phase of the reaction as each cycle occurs (i.e., in real time). Real-time PCR is now widely employed for measuring 16S rRNA and functional gene abundance and expression in the environment, has been used in numerous studies of hydrocarbon-degrading bacteria, and the technique has promising possibilities as a tool for assessing hydrocarbon-contaminated environments and monitoring natural attenuation or bioremediation techniques. This chapter looks at the kinetics of PCR to explain the benefits of real-time PCR over traditional end-point PCR, and discusses the most popular detection chemistries and how they allow accurate quantification. Guidelines are provided for the design of real-time PCR primers and probes, and detailed protocols are given for both TaqMan and SYBR Green assays for quantifying gene abundance, as well as a two-step reverse transcription real-time PCR protocol for quantifying gene expression.


Applied and Environmental Microbiology | 2016

Survival, Biofilm Formation, and Growth Potential of Environmental and Enteric Escherichia coli Strains in Drinking Water Microcosms

Cathy L. Abberton; Ludmila Bereschenko; Paul W. J. J. van der Wielen; Cindy J. Smith

ABSTRACT Escherichia coli is the most commonly used indicator for fecal contamination in drinking water distribution systems (WDS). The assumption is that E. coli bacteria are of enteric origin and cannot persist for long outside their host and therefore act as indicators of recent contamination events. This study investigates the fate of E. coli in drinking water, specifically addressing survival, biofilm formation under shear stress, and regrowth in a series of laboratory-controlled experiments. We show the extended persistence of three E. coli strains (two enteric isolates and one soil isolate) in sterile and nonsterile drinking water microcosms at 8 and 17°C, with T 90 (time taken for a reduction in cell number of 1 log10 unit) values ranging from 17.4 ± 1.8 to 149 ± 67.7 days, using standard plate counts and a series of (reverse transcription-)quantitative PCR [(RT-)Q-PCR] assays targeting 16S rRNA, tuf, uidA, and rodA genes and transcripts. Furthermore, each strain was capable of attaching to a surface and replicating to form biofilm in the presence of nutrients under a range of shear stress values (0.6, 2.0, and 4.4 dynes [dyn] cm−2; BioFlux system; Fluxion); however, cell numbers did not increase when drinking water flowed over the biofilm (P > 0.05 by t test). Finally, E. coli regrowth within drinking water microcosms containing polyethylene PE-100 pipe wall material was not observed in the biofilm or water phase using a combination of culturing and Q-PCR methods for E. coli. The results of this work highlight that when E. coli enters drinking water it has the potential to survive and attach to surfaces but that regrowth within drinking water or biofilm is unlikely. IMPORTANCE The provision of clean, safe drinking water is fundamental to society. WDS deliver water to consumers via a vast network of pipes. E. coli is used as an indicator organism for recent contamination events based on the premise that it cannot survive for long outside its host. A key public health concern therefore arises around the fate of E. coli on entering a WDS; its survival, ability to form a biofilm, and potential for regrowth. In particular, if E. coli bacteria have the ability to incorporate and regrow within the pipe wall biofilm of a WDS, they could reinoculate the water at a later stage. This study sheds light on the fate of environmental and enteric strains of E. coli in drinking water showing extended survival, the potential for biofilm formation under shear stress, and importantly, that regrowth in the presence of an indigenous microbial community is unlikely.


BMC Biotechnology | 2015

A rapid culture independent methodology to quantitatively detect and identify common human bacterial pathogens associated with contaminated high purity water

Elizabeth Minogue; Nina Tuite; Cindy J. Smith; Kate Reddington; Thomas Barry

BackgroundWater and High Purity Water (HPW) distribution systems can be contaminated with human pathogenic microorganisms. This biocontamination may pose a risk to human health as HPW is commonly used in the industrial, pharmaceutical and clinical sectors. Currently, routine microbiological testing of HPW is performed using slow and labour intensive traditional microbiological based techniques. There is a need to develop a rapid culture independent methodology to quantitatively detect and identify biocontamination associated with HPW.ResultsA novel internally controlled 5-plex real-time PCR Nucleic Acid Diagnostics assay (NAD), was designed and optimised in accordance with Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines, to rapidly detect, identify and quantify the human pathogenic bacteria Stenotrophomonas maltophilia, Burkholderia species, Pseudomonas aeruginosa and Serratia marcescens which are commonly associated with the biocontamination of water and water distribution systems. The specificity of the 5-plex assay was tested against genomic DNA isolated from a panel of 95 microorganisms with no cross reactivity observed. The analytical sensitivities of the S. maltophilia, B. cepacia, P. aeruginosa and the S. marcescens assays are 8.5, 5.7, 3.2 and 7.4 genome equivalents respectively.Subsequently, an analysis of HPW supplied by a Millipore Elix 35 water purification unit performed using standard microbiological methods revealed high levels of naturally occurring microbiological contamination. Five litre water samples from this HPW delivery system were also filtered and genomic DNA was purified directly from these filters. These DNA samples were then tested using the developed multiplex real-time PCR NAD assay and despite the high background microbiological contamination observed, both S. maltophilia and Burkholderia species were quantitatively detected and identified. At both sampling points the levels of both S. maltophilia and Burkholderia species present was above the threshold of 10 cfu/100 ml recommended by both EU and US guidelines.ConclusionsThe novel culture independent methodology described in this study allows for rapid (<5 h), quantitative detection and identification of these four human pathogens from biocontaminated water and HPW distribution systems. We propose that the described NAD assay and associated methodology could be applied to routine testing of water and HPW distribution systems to assure microbiological safety and high water quality standards.

Collaboration


Dive into the Cindy J. Smith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wim G. Meijer

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Andrew W. Stott

Natural Environment Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge