Cindy L. Will
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cindy L. Will.
Cell | 2009
Markus C. Wahl; Cindy L. Will; Reinhard Lührmann
Ribonucleoproteins (RNPs) mediate key cellular functions such as gene expression and its regulation. Whereas most RNP enzymes are stable in composition and harbor preformed active sites, the spliceosome, which removes noncoding introns from precursor messenger RNAs (pre-mRNAs), follows fundamentally different strategies. In order to provide both accuracy to the recognition of reactive splice sites in the pre-mRNA and flexibility to the choice of splice sites during alternative splicing, the spliceosome exhibits exceptional compositional and structural dynamics that are exploited during substrate-dependent complex assembly, catalytic activation, and active site remodeling.
Cold Spring Harbor Perspectives in Biology | 2011
Cindy L. Will; Reinhard Lührmann
Pre-mRNA splicing is catalyzed by the spliceosome, a multimegadalton ribonucleoprotein (RNP) complex comprised of five snRNPs and numerous proteins. Intricate RNA-RNA and RNP networks, which serve to align the reactive groups of the pre-mRNA for catalysis, are formed and repeatedly rearranged during spliceosome assembly and catalysis. Both the conformation and composition of the spliceosome are highly dynamic, affording the splicing machinery its accuracy and flexibility, and these remarkable dynamics are largely conserved between yeast and metazoans. Because of its dynamic and complex nature, obtaining structural information about the spliceosome represents a major challenge. Electron microscopy has revealed the general morphology of several spliceosomal complexes and their snRNP subunits, and also the spatial arrangement of some of their components. X-ray and NMR studies have provided high resolution structure information about spliceosomal proteins alone or complexed with one or more binding partners. The extensive interplay of RNA and proteins in aligning the pre-mRNAs reactive groups, and the presence of both RNA and protein at the core of the splicing machinery, suggest that the spliceosome is an RNP enzyme. However, elucidation of the precise nature of the spliceosomes active site, awaits the generation of a high-resolution structure of its RNP core.
Current Opinion in Cell Biology | 2001
Cindy L. Will; Reinhard Lührmann
Significant advances have been made in elucidating the biogenesis pathway and three-dimensional structure of the UsnRNPs, the building blocks of the spliceosome. U2 and U4/U6*U5 tri-snRNPs functionally associate with the pre-mRNA at an earlier stage of spliceosome assembly than previously thought, and additional evidence supporting UsnRNA-mediated catalysis of pre-mRNA splicing has been presented.
Nature | 2008
Sergey Bessonov; Maria Anokhina; Cindy L. Will; Henning Urlaub; Reinhard Lührmann
Formation of catalytically active RNA structures within the spliceosome requires the assistance of proteins. However, little is known about the number and nature of proteins needed to establish and maintain the spliceosome’s active site. Here we affinity-purified human spliceosomal C complexes and show that they catalyse exon ligation in the absence of added factors. Comparisons of the composition of the precatalytic versus the catalytic spliceosome revealed a marked exchange of proteins during the transition from the B to the C complex, with apparent stabilization of Prp19–CDC5 complex proteins and destabilization of SF3a/b proteins. Disruption of purified C complexes led to the isolation of a salt-stable ribonucleoprotein (RNP) core that contained both splicing intermediates and U2, U5 and U6 small nuclear RNA plus predominantly U5 and human Prp19–CDC5 proteins and Prp19-related factors. Our data provide insights into the spliceosome’s catalytic RNP domain and indicate a central role for the aforementioned proteins in sustaining its catalytically active structure.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Klaus Hartmuth; Henning Urlaub; Hans-Peter Vornlocher; Cindy L. Will; Marc Gentzel; Matthias Wilm; Reinhard Lührmann
Detailed knowledge of the composition and structure of the spliceosome and its assembly intermediates is a prerequisite for understanding the complex process of pre-mRNA splicing. To this end, we have developed a tobramycin affinity-selection method that is generally applicable for the purification of native RNP complexes. By using this method, we have isolated human prespliceosomes that are ideally suited for both biochemical and structural studies. MS identified >70 prespliceosome-associated proteins, including nearly all known U1 and U2 snRNP proteins, and expected non-snRNP splicing factors. In addition, the DEAD-box protein p68, RNA helicase A, and a number of proteins that appear to perform multiple functions in the cell, such as YB-1 and TLS, were detected. Several previously uncharacterized proteins of unknown function were also identified, suggesting that they play a role in splicing and potentially act during prespliceosome assembly. These data provide insight into the complexity of the splicing machinery at an early stage of its assembly.
Current Opinion in Cell Biology | 1997
Cindy L. Will; Reinhard Lührmann
Proteins have been implicated in an expanding variety of functions during pre-mRNA splicing. Molecular cloning has identified genes encoding spliceosomal proteins that potentially act as novel RNA helicases, GTPases, or protein isomerases. Novel protein-protein and protein-RNA interactions that are required for functional spliceosome formation have also been described. Finally, growing evidence suggests that proteins may contribute directly to the spliceosomes active sites.
Molecular and Cellular Biology | 2006
Jochen Deckert; Klaus Hartmuth; Daniel Boehringer; Nastaran Behzadnia; Cindy L. Will; Berthold Kastner; Holger Stark; Henning Urlaub; Reinhard Lührmann
ABSTRACT The spliceosomal B complex is the substrate that undergoes catalytic activation leading to catalysis of pre-mRNA splicing. Previous characterization of this complex was performed in the presence of heparin, which dissociates less stably associated components. To obtain a more comprehensive inventory of the B complex proteome, we isolated this complex under low-stringency conditions using two independent methods. MS2 affinity-selected B complexes supported splicing when incubated in nuclear extract depleted of snRNPs. Mass spectrometry identified over 110 proteins in both independently purified B complex preparations, including ∼50 non-snRNP proteins not previously found in the spliceosomal A complex. Unexpectedly, the heteromeric hPrp19/CDC5 complex and 10 additional hPrp19/CDC5-related proteins were detected, indicating that they are recruited prior to spliceosome activation. Electron microscopy studies revealed that MS2 affinity-selected B complexes exhibit a rhombic shape with a maximum dimension of 420 Å and are structurally more homogeneous than B complexes treated with heparin. These data provide novel insights into the composition and structure of the spliceosome just prior to its catalytic activation and suggest a potential role in activation for proteins recruited at this stage. Furthermore, the spliceosomal complexes isolated here are well suited for complementation studies with purified proteins to dissect factor requirements for spliceosome activation and splicing catalysis.
The EMBO Journal | 2002
Cindy L. Will; Henning Urlaub; Tilmann Achsel; Marc Gentzel; Matthias Wilm; Reinhard Lührmann
Mass spectrometry was used to identify novel proteins associated with the human 17S U2 snRNP and one of its stable subunits, SF3b. Several additional proteins were identified, demonstrating that 17S U2 snRNPs are significantly more complex than previously thought. Two of the newly identified proteins, namely the DEAD‐box proteins SF3b125 and hPrp5 (a homologue of Saccharomyces cerevisiae Prp5p) were characterized further. Immunodepletion experiments with HeLa nuclear extract indicated that hPrp5p plays an important role in pre‐mRNA splicing, acting during or prior to prespliceosome assembly. The SF3b‐associated protein SF3b125 dissociates at the time of 17S U2 formation, raising the interesting possibility that it might facilitate the assembly of the 17S U2 snRNP. Finally, immunofluorescence/FISH studies revealed a differential subnuclear distribution of U2 snRNA, hPrp5p and SF3b125, which were enriched in Cajal bodies, versus SF3b155 and SF3a120, which were not; a model for 17S U2 snRNP assembly based on these findings is presented. Taken together, these studies provide new insight into the composition of the 17S U2 snRNP and the potential function of several of its proteins.
Molecular Cell | 2012
Anna Hegele; Atanas Kamburov; Arndt Grossmann; Chrysovalantis Sourlis; Sylvia J. Wowro; Mareike Weimann; Cindy L. Will; Vlad Peña; Reinhard Lührmann; Ulrich Stelzl
More than 200 proteins copurify with spliceosomes, the compositionally dynamic RNPs catalyzing pre-mRNA splicing. To better understand protein - protein interactions governing splicing, we systematically investigated interactions between human spliceosomal proteins. A comprehensive Y2H interaction matrix screen generated a protein interaction map comprising 632 interactions between 196 proteins. Among these, 242 interactions were found between spliceosomal core proteins and largely validated by coimmunoprecipitation. To reveal dynamic changes in protein interactions, we integrated spliceosomal complex purification information with our interaction data and performed link clustering. These data, together with interaction competition experiments, suggest that during step 1 of splicing, hPRP8 interactions with SF3b proteins are replaced by hSLU7, positioning this second step factor close to the active site, and that the DEAH-box helicases hPRP2 and hPRP16 cooperate through ordered interactions with GPKOW. Our data provide extensive information about the spliceosomal protein interaction network and its dynamics.
The EMBO Journal | 2007
Nastaran Behzadnia; Monika M. Golas; Klaus Hartmuth; Bjoern Sander; Berthold Kastner; Jochen Deckert; Prakash Dube; Cindy L. Will; Henning Urlaub; Holger Stark; Reinhard Lührmann
Little is known about the higher‐order structure of prespliceosomal A complexes, in which pairing of the pre‐mRNAs splice sites occurs. Here, human A complexes were isolated under physiological conditions by double‐affinity selection. Purified complexes contained stoichiometric amounts of U1, U2 and pre‐mRNA, and crosslinking studies indicated that these form concomitant base pairing interactions with one another. A complexes contained nearly all U1 and U2 proteins plus ∼50 non‐snRNP proteins. Unexpectedly, proteins of the hPrp19/CDC5 complex were also detected, even when A complexes were formed in the absence of U4/U6 snRNPs, demonstrating that they associate independent of the tri‐snRNP. Double‐affinity purification yielded structurally homogeneous A complexes as evidenced by electron microscopy, and allowed for the first time the generation of a three‐dimensional structure. A complexes possess an asymmetric shape (∼260 × 200 × 195 Å) and contain a main body with various protruding elements, including a head‐like domain and foot‐like protrusions. Complexes isolated here are well suited for in vitro assembly studies to determine factor requirements for the A to B complex transition.