Cindy S. Chu
Mahidol University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cindy S. Chu.
PLOS Medicine | 2013
Verena I. Carrara; Khin Maung Lwin; Aung Pyae Phyo; Elizabeth A. Ashley; Jacher Wiladphaingern; Kanlaya Sriprawat; Marcus J. Rijken; Machteld E. Boel; Rose McGready; Stephane Proux; Cindy S. Chu; Pratap Singhasivanon; Nicholas J. White; François Nosten
Francois Nosten and colleagues evaluate malaria prevalence and incidence in the mobile population on the Myanmar side of the border with Thailand between 1999 and 2011, and also assess resistance to artemisinin.
Blood | 2011
Bruce Russell; Rossarin Suwanarusk; Céline Borlon; Fabio T. M. Costa; Cindy S. Chu; Marcus J. Rijken; Kanlaya Sriprawat; Lucile Warter; Esther G. L. Koh; Benoit Malleret; Yves Colin; Olivier Bertrand; John H. Adams; Umberto D'Alessandro; Georges Snounou; François Nosten; Laurent Rénia
Currently, there are no reliable RBC invasion assays to guide the discovery of vaccines against Plasmodium vivax, the most prevalent malaria parasite in Asia and South America. Here we describe a protocol for an ex vivo P vivax invasion assay that can be easily deployed in laboratories located in endemic countries. The assay is based on mixing enriched cord blood reticulocytes with matured, trypsin-treated P vivax schizonts concentrated from clinical isolates. The reliability of this assay was demonstrated using a large panel of P vivax isolates freshly collected from patients in Thailand.
The Lancet | 2010
Jane Crawley; Cindy S. Chu; George Mtove; François Nosten
The past decade has seen an unprecedented surge in political commitment and international funding for malaria control. Coverage with existing control methods (ie, vector control and artemisinin-based combination therapy) is increasing, and, in some Asian and African countries, childhood morbidity and mortality from malaria caused by Plasmodium falciparum are starting to decline. Consequently, there is now renewed interest in the possibility of malaria elimination. But the ability of the parasite to develop resistance to antimalarial drugs and increasing insecticide resistance of the vector threaten to reduce and even reverse current gains. Plasmodium vivax, with its dormant liver stage, will be particularly difficult to eliminate, and access to effective and affordable treatment at community level is a key challenge. New drugs and insecticides are needed urgently, while use of an effective vaccine as part of national malaria control programmes remains an elusive goal. This Seminar, which is aimed at clinicians who manage children with malaria, especially in resource-poor settings, discusses present knowledge and controversies in relation to the epidemiology, pathophysiology, diagnosis, treatment, and prevention of malaria in children.
Blood | 2015
Benoit Malleret; Ang Li; Rou Zhang; Kevin S. W. Tan; Rossarin Suwanarusk; Carla Claser; Jee Sun Cho; Esther G. L. Koh; Cindy S. Chu; Sasithon Pukrittayakamee; Mah Lee Ng; Florent Ginhoux; Lai Guan Ng; Chwee Teck Lim; François Nosten; Georges Snounou; Laurent Rénia; Bruce Russell
Plasmodium vivax merozoites only invade reticulocytes, a minor though heterogeneous population of red blood cell precursors that can be graded by levels of transferrin receptor (CD71) expression. The development of a protocol that allows sorting reticulocytes into defined developmental stages and a robust ex vivo P vivax invasion assay has made it possible for the first time to investigate the fine-scale invasion preference of P vivax merozoites. Surprisingly, it was the immature reticulocytes (CD71(+)) that are generally restricted to the bone marrow that were preferentially invaded, whereas older reticulocytes (CD71(-)), principally found in the peripheral blood, were rarely invaded. Invasion assays based on the CD71(+) reticulocyte fraction revealed substantial postinvasion modification. Thus, 3 to 6 hours after invasion, the initially biomechanically rigid CD71(+) reticulocytes convert into a highly deformable CD71(-) infected red blood cell devoid of host reticular matter, a process that normally spans 24 hours for uninfected reticulocytes. Concurrent with these changes, clathrin pits disappear by 3 hours postinvasion, replaced by distinctive caveolae nanostructures. These 2 hitherto unsuspected features of P vivax invasion, a narrow preference for immature reticulocytes and a rapid remodeling of the host cell, provide important insights pertinent to the pathobiology of the P vivax infection.
PLOS ONE | 2012
Rose McGready; Machteld E. Boel; Marcus J. Rijken; Elizabeth A. Ashley; Thein Cho; Oh Moo; Moo Koh Paw; Mupawjay Pimanpanarak; Lily Hkirijareon; Verena I. Carrara; Khin Maung Lwin; Aung Pyae Phyo; Claudia Turner; Cindy S. Chu; Michèle van Vugt; Richard N. Price; Christine Luxemburger; Feiko O. ter Kuile; Saw Oo Tan; Stephane Proux; Pratap Singhasivanon; Nicholas J. White; François Nosten
Introduction Maternal mortality is high in developing countries, but there are few data in high-risk groups such as migrants and refugees in malaria-endemic areas. Trends in maternal mortality were followed over 25 years in antenatal clinics prospectively established in an area with low seasonal transmission on the north-western border of Thailand. Methods and Findings All medical records from women who attended the Shoklo Malaria Research Unit antenatal clinics from 12th May 1986 to 31st December 2010 were reviewed, and maternal death records were analyzed for causality. There were 71 pregnancy-related deaths recorded amongst 50,981 women who attended antenatal care at least once. Three were suicide and excluded from the analysis as incidental deaths. The estimated maternal mortality ratio (MMR) overall was 184 (95%CI 150–230) per 100,000 live births. In camps for displaced persons there has been a six-fold decline in the MMR from 499 (95%CI 200–780) in 1986–90 to 79 (40–170) in 2006–10, p<0.05. In migrants from adjacent Myanmar the decline in MMR was less significant: 588 (100–3260) to 252 (150–430) from 1996–2000 to 2006–2010. Mortality from P.falciparum malaria in pregnancy dropped sharply with the introduction of systematic screening and treatment and continued to decline with the reduction in the incidence of malaria in the communities. P.vivax was not a cause of maternal death in this population. Infection (non-puerperal sepsis and P.falciparum malaria) accounted for 39.7 (27/68) % of all deaths. Conclusions Frequent antenatal clinic screening allows early detection and treatment of falciparum malaria and substantially reduces maternal mortality from P.falciparum malaria. No significant decline has been observed in deaths from sepsis or other causes in refugee and migrant women on the Thai–Myanmar border.
Malaria Journal | 2014
Nicholas J. White; Elizabeth A. Ashley; Judith Recht; Michael J. Delves; Andrea Ruecker; Frank Smithuis; Alice C Eziefula; Teun Bousema; Chris Drakeley; Kesinee Chotivanich; Mallika Imwong; Sasithon Pukrittayakamee; Jetsumon Prachumsri; Cindy S. Chu; Chiara Andolina; Germana Bancone; Tran Tinh Hien; Mayfong Mayxay; Walter Rj Taylor; Lorenz von Seidlein; Ric N. Price; Karen I. Barnes; Abdoulaye A. Djimde; Feiko O. ter Kuile; Roly Gosling; Ingrid Chen; Mehul Dhorda; Kasia Stepniewska; Philippe J Guerin; Charles J. Woodrow
Indirect clinical measures assessing anti-malarial drug transmission-blocking activity in falciparum malaria include measurement of the duration of gametocytaemia, the rate of gametocyte clearance or the area under the gametocytaemia-time curve (AUC). These may provide useful comparative information, but they underestimate dose-response relationships for transmission-blocking activity. Following 8-aminoquinoline administration P. falciparum gametocytes are sterilized within hours, whereas clearance from blood takes days. Gametocytaemia AUC and clearance times are determined predominantly by the more numerous female gametocytes, which are generally less drug sensitive than the minority male gametocytes, whereas transmission-blocking activity and thus infectivity is determined by the more sensitive male forms. In choosing doses of transmission-blocking drugs there is no substitute yet for mosquito-feeding studies.
PLOS ONE | 2013
Benoı̂t Malleret; Fenggao Xu; Narla Mohandas; Rossarin Suwanarusk; Cindy S. Chu; Juliana A. Leite; Kayen Low; Claudia Turner; Kanlaya Sriprawat; Rou Zhang; Olivier Bertrand; Yves Colin; Fabio T. M. Costa; Choon Nam Ong; Mah Lee Ng; Chwee Teck Lim; François Nosten; Laurent Rénia; Bruce Russell
Background The transition from enucleated reticulocytes to mature normocytes is marked by substantial remodeling of the erythrocytic cytoplasm and membrane. Despite conspicuous changes, most studies describe the maturing reticulocyte as a homogenous erythropoietic cell type. While reticulocyte staging based on fluorescent RNA stains such as thiazole orange have been useful in a clinical setting; these ‘sub-vital’ stains may confound delicate studies on reticulocyte biology and may preclude their use in heamoparasite invasion studies. Design and Methods Here we use highly purified populations of reticulocytes isolated from cord blood, sorted by flow cytometry into four sequential subpopulations based on transferrin receptor (CD71) expression: CD71high, CD71medium, CD71low and CD71negative. Each of these subgroups was phenotyped in terms of their, morphology, membrane antigens, biomechanical properties and metabolomic profile. Results Superficially CD71high and CD71medium reticulocytes share a similar gross morphology (large and multilobular) when compared to the smaller, smooth and increasingly concave reticulocytes as seen in the in the CD71low and CD71negativesamples. However, between each of the four sample sets we observe significant decreases in shear modulus, cytoadhesive capacity, erythroid receptor expression (CD44, CD55, CD147, CD235R, and CD242) and metabolite concentrations. Interestingly increasing amounts of boric acid was found in the mature reticulocytes. Conclusions Reticulocyte maturation is a dynamic and continuous process, confounding efforts to rigidly classify them. Certainly this study does not offer an alternative classification strategy; instead we used a nondestructive sampling method to examine key phenotypic changes of in reticulocytes. Our study emphasizes a need to focus greater attention on reticulocyte biology.
PLOS ONE | 2014
Germana Bancone; Cindy S. Chu; Raweewan Somsakchaicharoen; Nongnud Chowwiwat; Daniel M. Parker; Prakaykaew Charunwatthana; Nicholas J. White; François Nosten
Mutations in the glucose-6-phosphate dehydrogenase (G6PD) gene result in red blood cells with increased susceptibility to oxidative damage. Significant haemolysis can be caused by primaquine and other 8-aminoquinoline antimalarials used for the radical treatment of Plasmodium vivax malaria. The distribution and phenotypes of mutations causing G6PD deficiency in the male population of migrants and refugees in a malaria endemic region on the Thailand-Myanmar border were characterized. Blood samples for G6PD fluorescent spot test (FST), G6PD genotyping, and malaria testing were taken from 504 unrelated males of Karen and Burman ethnicities presenting to the outpatient clinics. The overall frequency of G6PD deficiency by the FST was 13.7%. Among the deficient subjects, almost 90% had the Mahidol variant (487G>A) genotype. The remaining subjects had Chinese-4 (392G>T), Viangchan (871G>A), Açores (595A>G), Seattle (844G>C) and Mediterranean (563C>T) variants. Quantification of G6PD activity was performed using a modification of the standard spectrophotometric assay on a subset of 24 samples with Mahidol, Viangchan, Seattle and Chinese-4 mutations; all samples showed a residual enzymatic activity below 10% of normal and were diagnosed correctly by the FST. Further studies are needed to characterise the haemolytic risk of using 8-aminoquinolines in patients with these genotypes.
American Journal of Tropical Medicine and Hygiene | 2015
Germana Bancone; Cindy S. Chu; Nongnud Chowwiwat; Raweewan Somsakchaicharoen; Pornpimon Wilaisrisak; Prakaykaew Charunwatthana; Pooja Bansil; Sarah McGray; Gonzalo J. Domingo; François Nosten
The use of primaquine and other 8-aminoquinolines for malaria elimination is hampered by, among other factors, the limited availability of point-of-care tests for the diagnosis of glucose-6-phosphate dehydrogenase (G6PD) deficiency. Historically, the most used source of blood for G6PD analyses is venous blood, whereas diagnostic devices used in the field require the use of capillary blood; data have shown that the two sources of blood often differ with respect to hemoglobin concentration and number of red blood cells. Therefore, we have analyzed, in both capillary and venous blood drawn from the same healthy donors, the correlation of G6PD activity assessed by two qualitative tests (the Fluorescent Spot test and the CareStart test) with the gold standard quantitative spectrophotometric assay. Results obtained on 150 subjects with normal, intermediate, and deficient G6PD phenotypes show that, although differences exist between the aforementioned characteristics in capillary and venous blood, these do not impact on the quantitative assessment of G6PD activity after corrected for hemoglobin concentration or red blood cell count. Furthermore, we have assessed the sensitivity and specificity of the two qualitative tests against the gold standard spectrophotometric assay at different activity thresholds of residual enzymatic activity in both blood sources.
Malaria Journal | 2014
Rou Zhang; Wenn-Chyau Lee; Benoit Malleret; Rossarin Suwanarusk; Ming Dao; Cindy S. Chu; Chwee Teck Lim; Laurent Rénia; François Nosten; Bruce Russell
Background Chloroquine (CQ) and artesunate (AS) are widely used as blood schizontocides in P. vivax treatment. Recent clinical observations show late stage parasites are cleared more rapidly than expected post treatment. As the high deformability of P. vivax facilitates its escaping from the splenic clearance, we hypothesize that CQ and AS directly affect the P. vivax infected red blood cells (iRBCs) rigidity. As a consequence, parasites are rapidly cleared from the blood circulation. Materials and methods P. vivax isolates from Thailand were pulse incubated with AS, CQ and a spiroindolone (NITD609). Morphological changes and rosetting frequency were assessed by sub vital staining. The micropipette aspiration technique was the used to quantify the cell membrane shear modulus. Microfluidics were used to study the in vitro iRBCs behaviour after drug treatment. Results While CQ and AS did not directly affect iRBC shear modulus, it significantly enhanced rosetting frequency and consequently the rigidity of rosetted iRBCs (the attachment of a single red cell results in a significant increase in shear modulus of the iRBC). NITD609 directly affected the iRBC rigidity. Am icrofluidic model of the spleen shows that P. vivax iRBCs with a higher rigidity are removed from flow. This study also show that normocytes that rosette with P. vivax iRBCs; form strong attachments (~500pN) that withstand a range of physiological shear stresses. Conclusions In addition to providing new and important baseline biomechanical data on P. vivax rosettes; this ex vivo study also provides a possible explanation for the clinically observed disappearance of P. vivax parasites soon after treatment.