Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cindy T.J. van Velthoven is active.

Publication


Featured researches published by Cindy T.J. van Velthoven.


Brain Behavior and Immunity | 2010

Mesenchymal stem cell treatment after neonatal hypoxic-ischemic brain injury improves behavioral outcome and induces neuronal and oligodendrocyte regeneration.

Cindy T.J. van Velthoven; Annemieke Kavelaars; Frank van Bel; Cobi J. Heijnen

Birth asphyxia is a frequent cause of perinatal morbidity and mortality and treatment options are very limited. Our aim was to determine the effects of treatment with bone marrow-derived mesenchymal stem cells (MSC) after neonatal hypoxic-ischemic brain injury (HI). Nine-day old mice were exposed to cerebral HI and endogenous cell proliferation was determined by BrdU-incorporation. Maximal endogenous cell proliferation, indicative for a trophic milieu, was observed at 3 days after HI. MSC transplantation at this time point decreased neuronal and oligodendrocyte loss when determined 21 days after HI by 42% and 31%, respectively. MSC treatment enhanced BrdU-incorporation in the ischemic hemisphere mainly in cells of recipient origin. The percentage of recently divided neurons and oligodendrocytes in hippocampus and cortex was increased after MSC transplantation. MSC treatment reduced the percentage of cortical and increased the percentage of hippocampal BrdU+-astrocytes. The percentage of BrdU+-microglia decreased after MSC treatment. Motoric behavior in the cylinder rearing test at 10 and 21 days after HI was significantly improved by MSC treatment 3 days after the insult. Moreover, even when treatment was started at 10 days after HI, there was a significant reduction in lesion size and improvement of behavioral outcome. Our data show that MSC treatment after neonatal HI brain damage improved functional outcome, reduced lesion volume, increased differentiation of recently divided cells towards neurons and oligodendrocytes and decreased proliferating inflammatory cells. We propose that MSC transplantation is a powerful treatment to improve behavioral outcome and cerebral lesion volume after neonatal brain damage via stimulation of endogenous repair processes.


The Journal of Neuroscience | 2010

Repeated mesenchymal stem cell treatment after neonatal hypoxia-ischemia has distinct effects on formation and maturation of new neurons and oligodendrocytes leading to restoration of damage, corticospinal motor tract activity, and sensorimotor function.

Cindy T.J. van Velthoven; Annemieke Kavelaars; Frank van Bel; Cobi J. Heijnen

Birth asphyxia is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. We show that a single mesenchymal stem cell treatment at 3 d (MSC-3) after neonatal hypoxia–ischemia (HI) in postnatal day 9 mice improved sensorimotor function and reduced lesion size. A second MSC treatment at 10 d after HI (MSC-3+10) further enhanced sensorimotor improvement and recovery of MAP2 and MBP (myelin basic protein) staining. Ipsilateral anterograde corticospinal tract tracing with biotinylated dextran amine (BDA) showed that HI reduced BDA labeling of the contralateral spinal cord. Only MSC-3+10 treatment partially restored contralateral spinal cord BDA staining, indicating enhanced axonal remodeling. MSC-3 enhanced formation of bromodeoxyuridine-positive neurons and oligodendrocytes. Interestingly, the second gift at day 10 did not further increase new cell formation, whereas only MSC-10 did. These findings indicate that increased positive effect of MSC-3+10 compared with MSC-3 alone is mediated via distinct pathways. We hypothesize that MSCs adapt their growth and differentiation factor production to the needs of the environment at the time of intracranial injection. Comparing the response of MSCs to in vitro culture with HI brain extracts obtained at day 10 from MSC-3- or vehicle-treated animals by pathway-focused PCR array analysis revealed that 29 genes encoding secreted factors were indeed differentially regulated. We propose that the function of MSCs is dictated by adaptive specific signals provided by the damaged and regenerating brain.


Pediatric Research | 2010

Nasal Administration of Stem Cells: A Promising Novel Route to Treat Neonatal Ischemic Brain Damage

Cindy T.J. van Velthoven; Annemieke Kavelaars; Frank van Bel; Cobi J. Heijnen

Mesenchymal stem cell (MSC) transplantation is a promising therapy to regenerate the brain after an ischemic event. We investigated the possibility to use the nasal route as a noninvasive method to repair the neonatal damaged brain. Nine-day-old mice underwent cerebral hypoxia-ischemia (HI), and MSCs were transplanted intranasally 10 d after HI. At 28 d after HI, MSCs were still present in the affected hemisphere but had not differentiated into cerebral cell types. Intranasal MSC treatment significantly improved sensorimotor function in the cylinder rearing test at 21 and 28 d after HI. Furthermore, intranasal MSC treatment decreased gray and white matter area loss when determined 28 d after HI by 34 and 37%, respectively. MSC cultured in vitro with brain extracts obtained 10 d after HI, responded to the ischemic brain by up-regulation of several growth factors, including fibroblast growth factor 2 and nerve growth factor in comparison with brain extracts of sham-operated controls. In conclusion, MSC can reliably be delivered to the brain via the nasal route to induce functional recovery and a reduction in brain lesion size. We propose that MSC function by stimulating endogenous cerebral repair by adapting their secretion profile to the ischemic brain leading to up-regulation of repair promoting factors.


Stroke | 2013

Mesenchymal Stem Cell Transplantation Attenuates Brain Injury After Neonatal Stroke

Cindy T.J. van Velthoven; R. Ann Sheldon; Annemieke Kavelaars; Nikita Derugin; Zinaida S. Vexler; Hanneke L D M Willemen; Mirjam Maas; Cobi J. Heijnen; Donna M. Ferriero

Background and Purpose— Brain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem cells (MSC) have been shown to improve outcome after neonatal hypoxic-ischemic brain injury mainly by secretion of growth factors stimulating repair processes. We investigated whether MSC treatment improves recovery after neonatal stroke and whether MSC overexpressing brain-derived neurotrophic factor (MSC-BDNF) further enhances recovery. Methods— We performed 1.5-hour transient middle cerebral artery occlusion in 10-day-old rats. Three days after reperfusion, pups with evidence of injury by diffusion-weighted MRI were treated intranasally with MSC, MSC-BDNF, or vehicle. To determine the effect of MSC treatment, brain damage, sensorimotor function, and cerebral cell proliferation were analyzed. Results— Intranasal delivery of MSC- and MSC-BDNF significantly reduced infarct size and gray matter loss in comparison with vehicle-treated rats without any significant difference between MSC- and MSC-BDNF–treatment. Treatment with MSC-BDNF significantly reduced white matter loss with no significant difference between MSC- and MSC-BDNF–treatment. Motor deficits were also improved by MSC treatment when compared with vehicle-treated rats. MSC-BDNF–treatment resulted in an additional significant improvement of motor deficits 14 days after middle cerebral artery occlusion, but there was no significant difference between MSC or MSC-BDNF 28 days after middle cerebral artery occlusion. Furthermore, treatment with either MSC or MSC-BDNF induced long-lasting cell proliferation in the ischemic hemisphere. Conclusions— Intranasal administration of MSC after neonatal stroke is a promising therapy for treatment of neonatal stroke. In this experimental paradigm, MSC- and BNDF-hypersecreting MSC are equally effective in reducing ischemic brain damage.


PLOS ONE | 2013

Intranasal Mesenchymal Stem Cell Treatment for Neonatal Brain Damage: Long-Term Cognitive and Sensorimotor Improvement

Vanessa Donega; Cindy T.J. van Velthoven; Cora H. Nijboer; Frank van Bel; Martien J.H. Kas; Annemieke Kavelaars; Cobi J. Heijnen

Mesenchymal stem cell (MSC) administration via the intranasal route could become an effective therapy to treat neonatal hypoxic-ischemic (HI) brain damage. We analyzed long-term effects of intranasal MSC treatment on lesion size, sensorimotor and cognitive behavior, and determined the therapeutic window and dose response relationships. Furthermore, the appearance of MSCs at the lesion site in relation to the therapeutic window was examined. Nine-day-old mice were subjected to unilateral carotid artery occlusion and hypoxia. MSCs were administered intranasally at 3, 10 or 17 days after hypoxia-ischemia (HI). Motor, cognitive and histological outcome was investigated. PKH-26 labeled cells were used to localize MSCs in the brain. We identified 0.5×106 MSCs as the minimal effective dose with a therapeutic window of at least 10 days but less than 17 days post-HI. A single dose was sufficient for a marked beneficial effect. MSCs reach the lesion site within 24 h when given 3 or 10 days after injury. However, no MSCs were detected in the lesion when administered 17 days following HI. We also show for the first time that intranasal MSC treatment after HI improves cognitive function. Improvement of sensorimotor function and histological outcome was maintained until at least 9 weeks post-HI. The capacity of MSCs to reach the lesion site within 24 h after intranasal administration at 10 days but not at 17 days post-HI indicates a therapeutic window of at least 10 days. Our data strongly indicate that intranasal MSC treatment may become a promising non-invasive therapeutic tool to effectively reduce neonatal encephalopathy.


Annals of Neurology | 2011

Targeting the p53 pathway to protect the neonatal ischemic brain

Cora H. Nijboer; Cobi J. Heijnen; Michael A. van der Kooij; Jitske Zijlstra; Cindy T.J. van Velthoven; Carsten Culmsee; Frank van Bel; Henrik Hagberg; Annemieke Kavelaars

To investigate whether inhibition of mitochondrial p53 association using pifithrin‐μ (PFT‐μ) represents a potential novel neuroprotective strategy to combat perinatal hypoxic‐ischemic (HI) brain damage.


The Journal of Neuroscience | 2010

GRK2: A Novel Cell-Specific Regulator of Severity and Duration of Inflammatory Pain

Niels Eijkelkamp; Cobi J. Heijnen; Hanneke L D M Willemen; Ronald Deumens; Elbert A. Joosten; Wendy Kleibeuker; Ilona den Hartog; Cindy T.J. van Velthoven; Cora H. Nijboer; Mohammed A. Nassar; Gerald W. Dorn; John N. Wood; Annemieke Kavelaars

Chronic pain associated with inflammation is a common clinical problem, and the underlying mechanisms have only begun to be unraveled. GRK2 regulates cellular signaling by promoting G-protein-coupled receptor (GPCR) desensitization and direct interaction with downstream kinases including p38. The aim of this study was to determine the contribution of GRK2 to regulation of inflammatory pain and to unravel the underlying mechanism. GRK2+/− mice with an ∼50% reduction in GRK2 developed increased and markedly prolonged thermal hyperalgesia and mechanical allodynia after carrageenan-induced paw inflammation or after intraplantar injection of the GPCR-binding chemokine CCL3. The effect of reduced GRK2 in specific cells was investigated using Cre–Lox technology. Carrageenan- or CCL3-induced hyperalgesia was increased but not prolonged in mice with decreased GRK2 only in Nav1.8 nociceptors. In vitro, reduced neuronal GRK2 enhanced CCL3-induced TRPV1 sensitization. In vivo, CCL3-induced acute hyperalgesia in GRK2+/− mice was mediated via TRPV1. Reduced GRK2 in microglia/monocytes only was required and sufficient to transform acute carrageenan- or CCL3-induced hyperalgesia into chronic hyperalgesia. Chronic hyperalgesia in GRK2+/− mice was associated with ongoing microglial activation and increased phospho-p38 and tumor necrosis factor α (TNF-α) in the spinal cord. Inhibition of spinal cord microglial, p38, or TNF-α activity by intrathecal administration of specific inhibitors reversed ongoing hyperalgesia in GRK2+/− mice. Microglia/macrophage GRK2 expression was reduced in the lumbar ipsilateral spinal cord during neuropathic pain, underlining the pathophysiological relevance of microglial GRK2. Thus, we identified completely novel cell-specific roles of GRK2 in regulating acute and chronic inflammatory hyperalgesia.


Pediatric Research | 2012

Mesenchymal stem cells as a treatment for neonatal ischemic brain damage

Cindy T.J. van Velthoven; Annemieke Kavelaars; Cobi J. Heijnen

Mesenchymal stem cell (MSC)–based therapies have been proven effective in experimental models of numerous disorders. Treatment of ischemic brain injury by transplantation of MSCs in neonatal animal models has been shown to be effective in reducing lesion volume and improving functional outcome. The beneficial effect of MSC transplantation to treat neonatal brain injury might be explained by the great plasticity of the neonatal brain. The neonatal brain is still in a developmentally active phase, leading to a better efficiency of MSC transplantation than that observed in experiments using adult models of stroke. Enhanced neurogenesis and axonal remodeling likely underlie the improved functional outcome following MSC treatment after neonatal hypoxic–ischemic (HI) brain injury. With respect to the mechanism of repair by MSCs, MSCs do not survive long term and replace damaged tissue themselves. We propose that MSCs react to the needs of the ischemic cerebral environment by secretion of several growth factors, cytokines, and other bioactive molecules to regulate damage and repair processes. Parenchymal cells react to the secretome of the MSCs and contribute to stimulate repair processes. These intrinsic adaptive properties of MSCs make them excellent candidates for a novel therapy to treat the devastating effects of HI encephalopathy in the human neonate.


Brain Research Reviews | 2009

Regeneration of the ischemic brain by engineered stem cells: Fuelling endogenous repair processes

Cindy T.J. van Velthoven; Annemieke Kavelaars; Frank van Bel; Cobi J. Heijnen

After ischemic brain injury various cell types including neurons, glia and endothelial cells are damaged and lose their function. Effective regeneration of brain tissue requires that all these cell types have to be replenished and combined to form a new functional network. Recent advances in regenerative medicine show the ability of stem cells to differentiate into various cell lineages. Several types of stem cells have been used to treat ischemic brain injury in rodent models including neuronal stem cells, mesenchymal stem cells and hematopoietic stem cells. Although these studies show promising results, it remains to be determined whether the beneficial effect of cell-based therapies in ischemic brain injury results from direct replacement of damaged cells by the transplanted cells. On the basis of the current literature we propose that neuroprotection by activation of anti-apoptotic mechanisms as well as improvement of the trophic milieu necessary for endogenous repair processes may be more important mechanisms underlying the improved functional outcome after stem cell treatment. Transplantation of native unmodified stem cells as such may not be sufficient to boost repair mechanisms provided by the endogenous stem cell population. An important aim of this review is to discuss the literature on the possible enhancement of regenerative function by combining stem cell transplantation with gene transduction into stem cells to enhance their regenerative and neuroprotective therapeutic potential. Finally, we briefly discuss the possibility of translation of this therapy to the clinic.


Brain Behavior and Immunity | 2011

Mesenchymal stem cell transplantation changes the gene expression profile of the neonatal ischemic brain

Cindy T.J. van Velthoven; Annemieke Kavelaars; Frank van Bel; Cobi J. Heijnen

Mesenchymal stem cell (MSC) treatment is an effective strategy to reduce brain damage after neonatal hypoxia-ischemia (HI) in mice. We recently showed that a single injection with MSC at either 3 or 10 days after HI (MSC-3 or MSC-10) increases neurogenesis. In case of two injections (MSC-3+10), the second MSC application does not increase neurogenesis, but promotes corticospinal tract remodeling. Here we investigated GFP(+)-MSC engraftment level in the brain using quantitative-PCR analysis. We show for the first time that in the neonatal ischemic brain survival of transplanted MSC is very limited. At 3 days after injection ∼22% of transplanted MSC were still detectable and 18 days after the last administration barely ∼1%. These findings indicate that engraftment of MSC is not likely the underlying mechanism of the efficient regenerative process. Therefore, we tested the hypothesis that the effects of MSC-treatment on regenerative processes are related to specific changes in the gene expression of growth factors and cytokines in the damaged area of the brain using PCR-array analysis. We compared the effect of one (MSC-10) or two (MSC-3+10) injections of 10(5) MSC on gene expression in the brain. Our data show that MSC-10 induced expression of genes regulating proliferation/survival. In response to MSC-3+10-treatment a pattern functionally categorized as growth stimulating genes was increased. Collectively, our data indicate that specific regulation of the endogenous growth factor milieu rather than replacement of damaged tissue by exogenous MSC mediates regeneration of the damaged neonatal brain by MSC-treatment.

Collaboration


Dive into the Cindy T.J. van Velthoven's collaboration.

Top Co-Authors

Avatar

Cobi J. Heijnen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Annemieke Kavelaars

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge