Cinta Zapater
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cinta Zapater.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009
Angèle Tingaud-Sequeira; Cinta Zapater; François Chauvigné; David Otero; Joan Cerdà
Embryos of the marine killifish Fundulus heteroclitus are adapted to survive aerially. However, it is unknown if they are able to control development under dehydration conditions. Here, we show that air-exposed blastula embryos under saturated relative humidity were able to stimulate development, and hence the time of hatching was advanced with respect to embryos continuously immersed in seawater. Embryos exposed to air at later developmental stages did not hatch until water was added, while development was not arrested. Air-exposed embryos avoided dehydration probably because of their thickened egg envelope, although it suffered significant evaporative water loss. The potential role of aquaporins as part of the embryo response to dehydration was investigated by cloning the aquaporin-0 (FhAqp0), -1a (FhAqp1a), and -3 (FhAqp3) cDNAs. Functional expression in Xenopus laevis oocytes showed that FhaAqp1a was a water-selective channel, whereas FhAqp3 was permeable to water, glycerol, and urea. Expression of fhaqp0 and fhaqp1a was prominent during organogenesis, and their mRNA levels were similar between water- and air-incubated embryos. However, fhaqp3 transcripts were highly and transiently accumulated during gastrulation, and the protein product was localized in the basolateral membrane of the enveloping epithelial cell layer and in the membrane of ingressing and migrating blastomers. Interestingly, both fhaqp3 transcripts and FhAqp3 polypeptides were downregulated in air-exposed embryos. These data demonstrate that killifish embryos respond adaptively to environmental desiccation by accelerating development and that embryos are able to transduce dehydration conditions into molecular responses. The reduced synthesis of FhAqp3 may be one of these mechanisms to regulate water and/or solute transport in the embryo.
ACS Chemical Biology | 2013
Daniel Seeliger; Cinta Zapater; Dawid Krenc; Rose Haddoub; Sabine L. Flitsch; Eric Beitz; Joan Cerdà; Bert L. de Groot
Human aquaporin-1 (hAQP1) is a water channel found in many tissues and potentially involved in several human pathologies. Selective inhibitors of hAQP1 are discussed as novel treatment opportunities for glaucoma, brain edema, inflammatory pain, and certain types of cancer. However, only very few potent and chemically attractive blockers have been reported to date. In this study we present three novel hAQP1 blockers that have been identified by virtual screening and inhibit water flux through hAQP1 in Xenopus laevis oocyte swelling assays at low micromolar concentrations. The newly discovered compounds display no chemical similarity to hitherto known hAQP1 blockers and bind at the extracellular entrance of the channel, close to the ar/R selectivity filter. Furthermore, mutagenesis studies showed that Lys36, which is not conserved among the hAQP family, is crucially involved in binding and renders the discovered compounds suitable as leads for the development of selective hAQP1 inhibitors.
Molecular Biology and Evolution | 2011
Cinta Zapater; Franc xois Chauvigne; Birgitta Norberg; Roderick Nigel Finn; Joan Cerdà
The preovulatory hydration of teleost oocytes is a unique process among vertebrates. The hydration mechanism is most pronounced in marine acanthomorph teleosts that spawn pelagic (floating) eggs; however, the molecular pathway for water influx remains poorly understood. Recently, we revealed that whole-genome duplication (WGD) resulted in teleosts harboring the largest repertoire of molecular water channels in the vertebrate lineage and that a duplicated aquaporin-1 paralog is implicated in the oocyte hydration process. However, the origin and function of the aquaporin-1 paralogs remain equivocal. By integrating the molecular phylogeny with synteny and structural analyses, we show here that the teleost aqp1aa and -1ab paralogs (previously annotated as aqp1a and -1b, respectively) arose by tandem duplication rather than WGD and that the Aqp1ab C-terminus is the most rapidly evolving subdomain within the vertebrate aquaporin superfamily. The functional role of Aqp1ab was investigated in Atlantic halibut, a marine acanthomorph teleost that spawns one of the largest pelagic eggs known. We demonstrate that Aqp1ab is required for full hydration of oocytes undergoing meiotic maturation. We further show that the rapid structural divergence of the C-terminal regulatory domain causes ex vivo loss of function of halibut Aqp1ab when expressed in amphibian oocytes but not in zebrafish or native oocytes. However, by using chimeric constructs of halibut Aqp1aa and -1ab and antisera specifically raised against the C-terminus of Aqp1ab, we found that this cytoplasmic domain regulates in vivo trafficking to the microvillar portion of the oocyte plasma membrane when intraoocytic osmotic pressure is at a maximum. Interestingly, by coinjecting polyA(+) mRNA from postvitellogenic halibut follicles, ex vivo intracellular trafficking of Aqp1ab is rescued in amphibian oocytes. These data reveal that the physiological role of Aqp1ab during meiosis resumption is conserved in teleosts, but the remarkable degeneracy of the cytoplasmic domain has resulted in alternative regulation of the trafficking mechanism.
Proceedings of the National Academy of Sciences of the United States of America | 2014
François Chauvigné; Cinta Zapater; Josep M. Gasol; Joan Cerdà
Significance In vertebrates, the transition of postmeiotic spermatids into spermatozoa (spermiogenesis) is believed to occur indirectly in response to androgens released by the somatic Leydig cells after activation of the luteinizing hormone/choriogonadotropin receptor (LHCGR). In contrast to this indirect model, here we show that distantly related fishes express the homolog of the tetrapod LHCGR (Lhcgrba) also in germ cells, which directly drives spermiogenesis in response to the luteinizing hormone. Our findings reveal a nonsteroidal role of the Lhcgrba pathway in vertebrate germ cells with potential implications for the causes of male infertility. In both mammals and teleosts, the differentiation of postmeiotic spermatids to spermatozoa (spermiogenesis) is thought to be indirectly controlled by the luteinizing hormone (LH) acting through the LH/choriogonadotropin receptor (LHCGR) to stimulate androgen secretion in the interstitial Leydig cells. However, a more direct, nonsteroidal role of LH mediating the spermiogenic pathway remains unclear. Using a flatfish with semicystic spermatogenesis, in which spermatids are released into the seminiferous lobule lumen (SLL), where they develop into spermatozoa without direct contact with the supporting Sertoli cells, we show that haploid spermatids express the homolog of the tetrapod LHCGR (Lhcgrba). Both native Lh and intramuscularly injected His-tagged recombinant Lh (rLh) are immunodetected bound to the Lhcgrba of free spermatids in the SLL, showing that circulating gonadotropin can reach the intratubular compartment. In vitro incubation of flatfish spermatids isolated from the SLL with rLh specifically promotes their differentiation into spermatozoa, whereas recombinant follicle-stimulating hormone and steroid hormones are ineffective. Using a repertoire of molecular markers and inhibitors, we find that the Lh-Lhcgrba induction of spermiogenesis is mediated through a cAMP/PKA signaling pathway that initiates the transcription of genes potentially involved in the function of spermatozoa. We further show that Lhcgrba expression in germ cells also occurs in distantly related fishes, suggesting this feature is likely conserved in teleosts regardless of the type of germ cell development. These data reveal a role of LH in vertebrate germ cells, whereby a Lhcgrba-activated signaling cascade in haploid spermatids directs gene expression and the progression of spermiogenesis.
PLOS ONE | 2013
Angèle Tingaud-Sequeira; Juan José Lozano; Cinta Zapater; David Otero; Michael Kube; Richard Reinhardt; Joan Cerdà
Delayed hatching is a form of dormancy evolved in some amphibian and fish embryos to cope with environmental conditions transiently hostile to the survival of hatchlings or larvae. While diapause and cryptobiosis have been extensively studied in several animals, very little is known concerning the molecular mechanisms involved in the sensing and response of fish embryos to environmental cues. Embryos of the euryhaline killifish Fundulus heteroclitus advance dvelopment when exposed to air but hatching is suspended until flooding with seawater. Here, we investigated how transcriptome regulation underpins this adaptive response by examining changes in gene expression profiles of aerially incubated killifish embryos at ∼100% relative humidity, compared to embryos continuously flooded in water. The results confirm that mid-gastrula embryos are able to stimulate development in response to aerial incubation, which is accompanied by the differential expression of at least 806 distinct genes during a 24 h period. Most of these genes (∼70%) appear to be differentially expressed within 3 h of aerial exposure, suggesting a broad and rapid transcriptomic response. This response seems to include an early sensing phase, which overlaps with a tissue remodeling and activation of embryonic development phase involving many regulatory and metabolic pathways. Interestingly, we found fast (0.5–1 h) transcriptional differences in representatives of classical “stress” proteins, such as some molecular chaperones, members of signalling pathways typically involved in the transduction of sensor signals to stress response genes, and oxidative stress-related proteins, similar to that described in other animals undergoing dormancy, diapause or desiccation. To our knowledge, these data represent the first transcriptional profiling of molecular processes associated with desiccation resistance during delayed hatching in non-mammalian vertebrates. The exceptional transcriptomic plasticity observed in killifish embryos provides an important insight as to how the embryos are able to rapidly adapt to non-lethal desiccation conditions.
Biology of Reproduction | 2012
Cinta Zapater; François Chauvigné; Alexander P. Scott; Ana M. Gómez; Ioanna Katsiadaki; Joan Cerdà
ABSTRACT Ovarian growth (vitellogenesis) in most lower vertebrates is mediated by estradiol-17beta (E2) secreted by the follicles in response to follicle-stimulating hormone (Fsh), whereas oocyte maturation and ovulation are mediated by progestins, such as 17alpha,20beta-dihydroxypregn-4-en-3-one (17,20beta-P), produced in response to luteinizing hormone (Lh). In teleosts, follicular synthesis of 17,20beta-P at the time of maturation is due primarily to up-regulation of the enzymes P450c17-II (Cyp17a2) and 20beta-hydroxysteroid dehydrogenase (Cbr1). Here, we show that follicular cells associated with primary growth (previtellogenic) oocytes of the gilthead seabream also express cyp17a2 and cbr1, in addition to P450c17-I (cyp17a1) and aromatase (cyp19a1), enzymes required for E2 synthesis. Ovaries containing only oogonia and early primary ovarian follicles had a 60-fold higher concentration of 17,20beta-P than ovaries in the succeeding stages and had a higher expression of cbr1 and Fsh receptor (fshra). Stimulation of explants of primary follicles in vitro with recombinant piscine Fsh (rFsh), which specifically activates the seabream Fshra, promoted a rapid accumulation of 17,20beta-P, and synthesis was sustained by an external supply of 17alpha-hydroxyprogesterone. In the presence of Cbr1 inhibitors, rFsh-mediated 17,20beta-P production was reduced, with a concomitant increase in testosterone and E2 synthesis. In primary explants, rFsh up-regulated cyp17a2 and cbr1 transcription and simultaneously down-regulated cyp17a1 and cyp19a1 steady-state mRNA levels within 24 h. In contrast, in explants containing vitellogenic follicles, rFsh had no effect on cyp17a2 and cbr1 expression, but increased that of cyp17a1 and cyp19a1. These data suggest a functional Fshra-activated Cyp17a2/Cbr1 steroidogenic pathway in gilthead seabream primary ovarian follicles triggering the production of 17,20beta-P.
General and Comparative Endocrinology | 2013
Cinta Zapater; François Chauvigné; Beatriz Fernández-Gómez; Roderick Nigel Finn; Joan Cerdà
In mammals, downstream function of the nuclear progestin receptor (PGR) can be differentially regulated in each target tissue by altering the expression levels of PGR mRNA variants. Such PGR isoforms have also been identified in birds and reptiles, but not in non-amniote vertebrates. Based upon extensive phylogenetic, syntenic and functional analyses, here we show that higher orders of Teleostei retain a single pgr gene, and that four different pgr transcript variants of the extant gene are expressed in the ovary of an evolutionary advanced perciform teleost, the gilthead seabream (Sparus aurata). Three of the isoforms (pgr_tv2, pgr_tv3 and pgr_tv4) arise from alternative pre-mRNA splicing resulting in different N-terminally truncated receptors, whereas one isoform (pgr_tv1) is a deletion variant. Seabream wild-type Pgr shows the highest transactivational response to native euteleostean progestins, 17α,20β-dihydroxy-4-pregnen-3-one and 17α,20β,21-trihydroxy-4-pregnen-3-one, whereas the Pgr_tv3 and Pgr_tv4 isoforms independently regulate novel nuclear and cytosolic mechanisms of dominant-negative repression of Pgr-mediated transcription. In the seabream ovary, the wild-type Pgr protein is localized in oogonia, in the nuclei of primary (previtellogenic) oocytes, as well as in follicular (granulosa) cells and the oocyte cytoplasm of early and late vitellogenic ovarian follicles. Expression of wild-type pgr, pgr_tv3 and pgr_tv4 was the highest in seabream primary ovaries, while expression of both inhibitory receptor isoforms, but not of pgr, decreased during vitellogenesis. Stimulation of primary ovarian explants in vitro with recombinant piscine follicle-stimulating hormone and estrogen differentially regulated the temporal expression of pgr, pgr_tv3 and pgr_tv4. These findings suggest that, as in mammals, ovarian progestin responsiveness in the seabream, particularly during early oogenesis, may be regulated through alternative splicing of the nuclear pgr mRNA. Thus, the dominant-negative mechanism of PGR transcriptional regulation likely evolved prior to the separation of Actinopterygii (ray-finned fishes) from Sarcopterygii (lobe-finned fishes).
Fish Physiology and Biochemistry | 2013
Joan Cerdà; Cinta Zapater; François Chauvigné; Roderick Nigel Finn
The discovery of the role of a teleost-specific aquaporin (Aqp1ab) during the process of oocyte hydration in marine fish producing pelagic (floating) eggs, recently confirmed by molecular approaches, has revealed that this mechanism is more sophisticated than initially thought. Recent phylogenetic and genomic studies suggest that Aqp1ab likely evolved by tandem duplication from a common ancestor and further neofunctionalized in oocytes for water transport. Investigations into the regulation of Aqp1ab during oogenesis indicate that the mRNA and protein product are highly accumulated during early oocyte growth, possibly through the transcriptional activation of the aqp1ab promoter by the classical nuclear progesterone receptor and perhaps by Sry-related high mobility group [HMG]-box (Sox) transcription factors. During oocyte growth and maturation, Aqp1ab intracellular trafficking may be regulated by phosphorylation and/or dephosphorylation of specific C-terminal residues in Aqp1ab, as well as by signal-mediated sorting processes. These mechanisms possibly regulate the temporal insertion of Aqp1ab into the oocyte plasma membrane during oocyte hydration, although the intracellular signaling pathways involved are yet unknown. Interestingly, in some freshwater species that spawn partially hydrated eggs, high accumulation of transcripts encoding functional Aqp1ab channels have also been found in the ovary. These findings suggest that the Aqp1ab-mediated mechanism for oocyte hydration is likely conserved in teleosts. The tight regulation of Aqp1ab during oogenesis, at both the transcriptional and posttranslational levels, highlights the essential physiological role of this water channel and opens new research avenues for understanding the molecular basis of egg formation in fish.
Frontiers in Physiology | 2011
François Chauvigné; Cinta Zapater; Joan Cerdà
Aquaporins are believed to be involved in homeosmotic mechanisms of marine teleosts. Increasing data suggest that these molecular water channels play critical roles associated with the adaptation of gametes and early embryos to the external spawning environment. In this mini-review, we discuss recent studies suggesting the function of aquaporin-mediated fluid homeostasis during spermatozoa activation and egg formation in teleosts. In addition, we address the potential role of water channels in osmosensing and cell migration during early embryonic development.
The FASEB Journal | 2015
François Chauvigné; Cinta Zapater; Jon Anders Stavang; Geir Lasse Taranger; Joan Cerdà; Roderick Nigel Finn
Water homeostasis and the structural integrity of the vertebrate lens is partially mediated by AQP0 channels. Emerging evidence indicates that external pH may be involved in channel gating. Here we show that a tetraploid teleost, the Atlantic salmon, retains 4 aqp0 genes (aqp0a1, ‐0a2, ‐0b1, and ‐0b2), which are highly, but not exclusively, expressed in the lens. Functional characterization reveals that, although each paralog permeates water efficiently, the permeability is respectively shifted to the neutral, alkaline, or acidic pH in Aqp0a1, ‐0a2, and ‐0b1, whereas that of Aqp0b2 is not regulated by external pH. Mutagenesis studies demonstrate that Ser38, His39, and His40 residues in the extracellular transmembrane domain of α‐helix 2 facing the water pore are critical for the pH modulation of water transport. To validate these findings, we show that both zebrafish Aqp0a and ‐0b are functional water channels with respective pH sensitivities toward alkaline or acid pH ranges and that an N‐terminal allelic variant (Ser19) of Aqp0b exists that abolishes water transport in Xenopus laevis oocytes. The data suggest that the alkaline pH sensitivity is a conserved trait in teleost Aqp0 a‐type channels, whereas mammalian AQP0 and some teleost Aqp0 b‐type channels display an acidic pH permeation preference.—Chauvigné, F., Zapater, C., Stavang, J. A., Taranger, G. L., Cerdà, J., Finn, R. N. The pH sensitivity of Aqp0 channels in tetraploid and diploid teleosts. FASEB J. 29, 2172‐2184 (2015). www.fasebj.org