Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cinzia Dello Russo is active.

Publication


Featured researches published by Cinzia Dello Russo.


Neurochemistry International | 2002

Noradrenergic regulation of inflammatory gene expression in brain.

Douglas L. Feinstein; Michael T. Heneka; Vitaliy Gavrilyuk; Cinzia Dello Russo; Guy Weinberg; Elena Galea

It is now well accepted that inflammatory events contribute to the pathogenesis of numerous neurological disorders, including multiple sclerosis (MS), Alzheimers disease (AD), Parkinsons disease, and AIDs dementia. Whereas inflammation in the periphery is subject to rapid down regulation by increases in anti-inflammatory molecules and the presence of scavenging soluble cytokine receptors, the presence of an intact blood-brain barrier may limit a similar autoregulation from occurring in brain. Mechanisms intrinsic to the brain may provide additional immunomodulatory functions, and whose dysregulation could contribute to increased inflammation in disease. The findings that noradrenaline (NA) reduces cytokine expression in microglial, astroglial, and brain endothelial cells in vitro, and that modification of the noradrenergic signaling system occurs in some brain diseases having an inflammatory component, suggests that NA could act as an endogenous immunomodulator in brain. Furthermore, accumulating studies indicate that modification of the noradrenergic signaling system occurs in some neurodiseases. In this article, we will briefly review the evidence that NA can modulate inflammatory gene expression in vitro, summarize data supporting a similar immunomodulatory role in brain, and present recent data implicating a role for NA in attenuating the cortical inflammatory response to beta amyloid protein.


Journal of Neuroinflammation | 2011

The mTOR kinase inhibitor rapamycin decreases iNOS mRNA stability in astrocytes

Lucia Lisi; Pierluigi Navarra; Douglas L. Feinstein; Cinzia Dello Russo

BackgroundReactive astrocytes are capable of producing a variety of pro-inflammatory mediators and potentially neurotoxic compounds, including nitric oxide (NO). High amounts of NO are synthesized following up-regulation of inducible NO synthase (iNOS). The expression of iNOS is tightly regulated by complex molecular mechanisms, involving both transcriptional and post-transcriptional processes. The mammalian target of rapamycin (mTOR) kinase modulates the activity of some proteins directly involved in post-transcriptional processes of mRNA degradation. mTOR is a serine-threonine kinase that plays an evolutionarily conserved role in the regulation of cell growth, proliferation, survival, and metabolism. It is also a key regulator of intracellular processes in glial cells. However, with respect to iNOS expression, both stimulatory and inhibitory actions involving the mTOR pathway have been described. In this study the effects of mTOR inhibition on iNOS regulation were evaluated in astrocytes.MethodsPrimary cultures of rat cortical astrocytes were activated with different proinflammatory stimuli, namely a mixture of cytokines (TNFα, IFNγ, and IL-1β) or by LPS plus IFNγ. Rapamycin was used at nM concentrations to block mTOR activity and under these conditions we measured its effects on the iNOS promoter, mRNA and protein levels. Functional experiments to evaluate iNOS activity were also included.ResultsIn this experimental paradigm mTOR activation did not significantly affect astrocyte iNOS activity, but mTOR pathway was involved in the regulation of iNOS expression. Rapamycin did not display any significant effects under basal conditions, on either iNOS activity or its expression. However, the drug significantly increased iNOS mRNA levels after 4 h incubation in presence of pro-inflammatory stimuli. This stimulatory effect was transient, since no differences in either iNOS mRNA or protein levels were detected after 24 h. Interestingly, reduced levels of iNOS mRNA were detected after 48 hours, suggesting that rapamycin can modify iNOS mRNA stability. In this regard, we found that rapamycin significantly reduced the half-life of iNOS mRNA, from 4 h to 50 min when cells were co-incubated with cytokine mixture and 10 nM rapamycin. Similarly, rapamycin induced a significant up-regulation of tristetraprolin (TTP), a protein involved in the regulation of iNOS mRNA stability.ConclusionThe present findings show that mTOR controls the rate of iNOS mRNA degradation in astrocytes. Together with the marked anti-inflammatory effects that we previously observed in microglial cells, these data suggest possible beneficial effects of mTOR inhibitors in the treatment of inflammatory-based CNS pathologies.


European Journal of Neuroscience | 2002

Erythropoietin exerts anti‐apoptotic effects on rat microglial cells in vitro

Mauro Vairano; Cinzia Dello Russo; Giacomo Pozzoli; Alessandra Battaglia; Giovanni Scambia; Giuseppe Tringali; Maria Antonietta Aloe-Spiriti; Paolo Preziosi; Pierluigi Navarra

Erythropoietin (EPO), a renal cytokine regulating haematopoiesis, is also produced by different cell types within the central nervous system, where it acts via the activation of specific receptors. Current evidence shows that EPO exerts neurotrophic and neuroprotective activities in different in vivo and in vitro models of brain damage. In the present study we investigated the effects of EPO on primary cultures of rat cortical microglia and astrocytes. We found that: (i) EPO exerted a marked stimulatory effect on microglial cell viability, assessed through the MTS assay, whereas astrocytes were almost unaffected; (ii) the cytokine increased microglial cell population size in a concentration‐dependent manner; however, as microglia cultures undergo spontaneous apoptosis after separation from astrocytes, the apparent effect on cell proliferation could be attributed to EPO antagonism of normal apoptosis; (iii) subsequent flow cytometry analysis on microglial cells demonstrated both the trophic role of factor(s) released by astrocytes in mixed cultures, and the putative anti‐apoptotic action of EPO; (iv) the latter was further confirmed through the assessment of gene expression of anti‐ and pro‐apoptotic factors, which showed that EPO is able to shift the Bcl : Bax ratio towards a net anti‐apoptotic effect; (v) EPO did not affect the pro‐inflammatory function of microglial cells.


Journal of Neuroimmunology | 2005

Protective effects of a peroxisome proliferator-activated receptor-β/δ agonist in experimental autoimmune encephalomyelitis

Paul E. Polak; Sergey Kalinin; Cinzia Dello Russo; Vitaliy Gavrilyuk; Anthony Sharp; Jeffrey M. Peters; Jill C. Richardson; Tim M. Willson; Guy Weinberg; Douglas L. Feinstein

Agonists of the peroxisome proliferator-activated receptor gamma (PPARg) exert anti-inflammatory and anti-proliferative effects which led to testing of these drugs in experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. In contrast, the effect of PPARdelta (PPARy) agonists in EAE is not yet known. We show that oral administration of the selective PPARy agonist GW0742 reduced clinical symptoms in C57BL/6 mice that had been immunized with encephalitogenic myelin oligodendrocyte glycoprotein (MOG) peptide. In contrast to previous results with PPARg agonists, GW0742 only modestly attenuated clinical symptoms when the drug was provided simultaneously with immunization, but a greater reduction was observed if administered during disease progression. Reduced clinical symptoms were accompanied by a reduction in the appearance of new cortical lesions, however cerebellar lesion load was not reduced. Treatment of T-cells with GW0742 either in vivo or in vitro did not reduce IFNg production; however GW0742 reduced astroglial and microglial inflammatory activation and IL-1h levels in EAE brain. RTPCR analysis showed that GW0742 increased expression of some myelin genes. These data demonstrate that PPARy agonists, like other PPAR ligands, can exert protective actions in an autoimmune model of demyelinating disease. D 2005 Elsevier B.V. All rights reserved.


Journal of Neuroinflammation | 2004

Inhibition of microglial inflammatory responses by norepinephrine: effects on nitric oxide and interleukin-1β production

Cinzia Dello Russo; Anne I. Boullerne; Vitaliy Gavrilyuk; Douglas L. Feinstein

BackgroundUnder pathological conditions, microglia produce proinflammatory mediators which contribute to neurologic damage, and whose levels can be modulated by endogenous factors including neurotransmitters such as norepinephrine (NE). We investigated the ability of NE to suppress microglial activation, in particular its effects on induction and activity of the inducible form of nitric oxide synthase (NOS2) and the possible role that IL-1β plays in that response.MethodsRat cortical microglia were stimulated with bacterial lipopolysaccharide (LPS) to induce NOS2 expression (assessed by nitrite and nitrate accumulation, NO production, and NOS2 mRNA levels) and IL-1β release (assessed by ELISA). Effects of NE were examined by co-incubating cells with different concentrations of NE, adrenergic receptor agonists and antagonists, cAMP analogs, and protein kinase (PK) A and adenylate cyclase (AC) inhibitors. Effects on the NFκB:IκB pathway were examined by using selective a NFκB inhibitor and measuring IκBα protein levels by western blots. A role for IL-1β in NOS2 induction was tested by examining effects of caspase-1 inhibitors and using caspase-1 deficient cells.ResultsLPS caused a time-dependent increase in NOS2 mRNA levels and NO production; which was blocked by a selective NFκB inhibitor. NE dose-dependently reduced NOS2 expression and NO generation, via activation of β2-adrenergic receptors (β2-ARs), and reduced loss of inhibitory IkBα protein. NE effects were replicated by dibutyryl-cyclic AMP. However, co-incubation with either PKA or AC inhibitors did not reverse suppressive effects of NE, but instead reduced nitrite production. A role for IL-1β was suggested since NE potently blocked microglial IL-1β production. However, incubation with a caspase-1 inhibitor, which reduced IL-1β levels, had no effect on NO production; incubation with IL-receptor antagonist had biphasic effects on nitrite production; and NE inhibited nitrite production in caspase-1 deficient microglia.ConclusionsNE reduces microglial NOS2 expression and IL-1β production, however IL-1β does not play a critical role in NOS2 induction nor in mediating NE suppressive effects. Changes in magnitude or kinetics of cAMP may modulate NOS2 induction as well as suppression by NE. These results suggest that dysregulation of the central cathecolaminergic system may contribute to detrimental inflammatory responses and brain damage in neurological disease or trauma.


Biochemical Pharmacology | 2009

Involvement of mTOR kinase in cytokine-dependent microglial activation and cell proliferation.

Cinzia Dello Russo; Lucia Lisi; Giuseppe Tringali; Pierluigi Navarra

Neuroinflammation plays a prominent role in the pathophysiology of several neurodegenerative disorders, including Multiple Sclerosis. Reactive microglial cells are always found in areas of active demyelination as well as in normal-appearing white matter. Microglia contribute to initiating and maintaining brain inflammation, and once activated release pro-inflammatory mediators potentially cytotoxic, like nitric oxide (NO). It is now evident that the mTOR signaling pathway regulates different functions in the innate immune system, contributing to macrophage activation. More recently, mTOR has been found to enhance the survival of EOC2 microglia during oxygen-glucose deprivation and increase NO synthase 2 (NOS2) expression during hypoxia in BV2 microglial cell line, thus suggesting an involvement in microglial pro-inflammatory activation. In the present study, we detected mTOR activation in response to two different stimuli, namely LPS and a mixture of cytokines, in primary cultures of rat cortical microglia. Moreover, mTOR inhibitors reduced NOS activity and NOS2 expression induced by cytokines, but not those induced by LPS. The mTOR inhibitor RAD001, in combination with cytokines, also reduced microglial proliferation and the intracellular levels of cyclooxygenase. Under basal conditions mTOR inhibition significantly reduced microglial viability. Interestingly, mTOR inhibitors did not display any relevant effect on astrocyte NOS2 activity or cell viability. In conclusion, mTOR selectively controls microglial activation in response to pro-inflammatory cytokines and appears to play a crucial role in microglial viability; thus these drugs may be a useful pharmacological tool to reduce neuroinflammation.


Asn Neuro | 2011

The anti-inflammatory effects of dimethyl fumarate in astrocytes involve glutathione and haem oxygenase-1

Shao Xia Lin; Lucia Lisi; Cinzia Dello Russo; Paul E. Polak; Anthony Sharp; Guy Weinberg; Sergey Kalinin; Douglas L. Feinstein

DMF (dimethyl fumarate) exerts anti-inflammatory and pro-metabolic effects in a variety of cell types, and a formulation (BG-12) is being evaluated for monotherapy in multiple sclerosis patients. DMF modifies glutathione (GSH) levels that can induce expression of the anti-inflammatory protein HO-1 (haem oxygenase-1). In primary astrocytes and C6 glioma cells, BG-12 dose-dependently suppressed nitrite production induced by either LI [LPS (lipopolysaccharide) at 1 μg/ml plus IFNγ (interferon γ) at 20 units/ml] or a mixture of pro-inflammatory cytokines, with greater efficacy in C6 cells. BG-12 reduced NOS2 (nitric oxide synthase 2) mRNA levels and activation of a NOS2 promoter, reduced nuclear levels of NF-κB (nuclear factor κB) p65 subunit and attenuated loss of IκBα (inhibitory κBα) in both cell types, although with greater effects in astrocytes. In astrocytes, LI decreased mRNA levels for GSHr (GSH reductase) and GCL (c-glutamylcysteine synthetase), and slightly suppressed GSHs (GSH synthetase) mRNAs. Co-treatment with BG-12 prevented those decreased and increased levels above control values. In contrast, LI reduced GSHp (GSH peroxidase) and GCL in C6 cells, and BG-12 had no effect on those levels. BG-12 increased nuclear levels of Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2), an inducer of GSH-related enzymes, in astrocytes but not C6 cells. In astrocytes, GSH was decreased by BG-12 at 2 h and increased at 24 h. Prior depletion of GSH using buthionine-sulfoximine increased the ability of BG-12 to reduce nitrites. In astrocytes, BG-12 increased HO-1 mRNA levels and effects on nitrite levels were blocked by an HO-1 inhibitor. These results demonstrate that BG-12 suppresses inflammatory activation in astrocytes and C6 glioma cells, but with distinct mechanisms, different dependence on GSH and different effects on transcription factor activation.


Journal of Neurochemistry | 2006

The heat-shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin suppresses glial inflammatory responses and ameliorates experimental autoimmune encephalomyelitis

Cinzia Dello Russo; Paul E. Polak; Pilar R. Mercado; Alessandra Spagnolo; Anthony Sharp; Patricia Murphy; Adeela Kamal; Francis Burrows; Lawrence C. Fritz; Douglas L. Feinstein

The heat‐shock response (HSR), a highly conserved cellular response, is characterized by rapid expression of heat‐shock proteins (HSPs), and inhibition of other synthetic activities. The HSR can attenuate inflammatory responses, via suppression of transcription factor activation. A HSR can be induced pharmacologically by HSP90 inhibitors, through activation of the transcription factor Heat Shock Factor 1 (HSF1). In the present study we characterized the effects of 17‐allylamino‐17‐demethoxygeldanamycin (17‐AAG), a less toxic derivative of the naturally occurring HSP90 inhibitor geldanamycin, on glial inflammatory responses and the development of experimental autoimmune encephalomyelitis. In primary enriched glial cultures, 17‐AAG dose dependently reduced lipopolysaccharide‐dependent expression and activity of inducible nitric oxide synthase, attenuated interleukin (IL)‐1β expression and release, increased inhibitor of κB protein levels, and induced HSP70 expression. 17‐AAG administration to mice immunized with myelin oligodendrocyte glycoprotein peptide prevented disease onset when given at an early time, and reduced clinical symptoms when given during ongoing disease. T cells from treated mice showed a reduced response to immunogen re‐stimulation, and 17‐AAG reduced CD3‐ and CD28‐dependent IL‐2 production. Together, these data suggest that HSP90 inhibitors could represent a new approach for therapeutic intervention in autoimmune diseases such as multiple sclerosis.


Cellular and Molecular Neurobiology | 2003

Intrinsic Regulation of Brain Inflammatory Responses

Elena Galea; Michael T. Heneka; Cinzia Dello Russo; Douglas L. Feinstein

It is now well accepted that inflammatory responses in brain contribute to the genesis and evolution of damage in neurological diseases, trauma, and infection. Inflammatory mediators including cytokines, cell adhesion molecules, and reactive oxygen species including NO are detected in human brain and its animal models, and interventions that reduce levels or expression of these agents provide therapeutic benefit in many cases. Although in some cases, the causes of central inflammatory responses are clear—for example those due to viral infection in AIDS dementia, or those due to the secretion of proinflammatory substances by activated lymphocytes in multiple sclerosis—in other conditions the factors that allow the initiation of brain inflammation are not well understood; nor is it well known why brain inflammatory activation is not as well restricted as it is in the periphery. The concept is emerging that perturbation of endogenous regulatory mechanisms could be an important factor for initiation, maintenance, and lack of resolution of brain inflammation. Conversely, activation of intrinsic regulatory neuronal pathways could provide protection in neuroinflammatory conditions. This concept is the extension of the principle of “central neurogenic neuroprotection” formulated by Donald Reis and colleagues, which contends the existence of neuronal circuits that protect the brain against the damage initiated by excitotoxic injury. In this paper we will review work initiated in the Reis laboratory establishing that activation of endogenous neural circuits can exert anti-inflammatory actions in brain, present data suggesting that these effects could be mediated by noradrenaline, and summarize recent studies suggesting that loss of noradrenergic locus ceruleus neurons contributes to inflammatory activation in Alzheimers disease.


Journal of Biological Chemistry | 2002

Norepinephrine Increases IκBα Expression in Astrocytes

Vitaliy Gavrilyuk; Cinzia Dello Russo; Michael T. Heneka; Dale A. Pelligrino; Guy Weinberg; Douglas L. Feinstein

The neurotransmitter norepinephrine (NE) can inhibit inflammatory gene expression in glial cells; however, the mechanisms involved are not clear. In primary astrocytes, NE dose-dependently increased the expression of inhibitory IκBα protein accompanied by an increase in steady state levels of IκBα mRNA. Maximal increases were observed at 30–60 min for the mRNA and at 4 h for protein, and these effects were mediated by NE binding to β-adrenergic receptors. NE activated a 1.3-kilobase IκBα promoter transfected into astrocytes or C6 glioma cells, and this activation was prevented by a β-antagonist and by protein kinase A inhibitors but not by an NFκB inhibitor. NE increased IκBα protein in both the cytosolic and the nuclear fractions, suggesting an increase in nuclear uptake of IκBα. IκBα was detected in the frontal cortex of normal adult rats, and its levels were reduced if central NE levels were depleted by lesion of the locus ceruleus. The reduction of brain IκBα levels was paralleled by increased inflammatory responses to lipopolysaccharide. These results demonstrate that IκBα expression is regulated by NE at both transcriptional and post-transcriptional levels, which could contribute to the observed anti-inflammatory properties of NE in vitro and in vivo.

Collaboration


Dive into the Cinzia Dello Russo's collaboration.

Top Co-Authors

Avatar

Pierluigi Navarra

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Lucia Lisi

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Tringali

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Douglas L. Feinstein

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Paolo Preziosi

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alice De Corato

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Guy Weinberg

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Mauro Vairano

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Anthony Sharp

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge