Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cinzia Garuti is active.

Publication


Featured researches published by Cinzia Garuti.


Journal of Clinical Investigation | 2001

Autosomal-dominant hemochrom-atosis is associated with a mutation in the ferroportin (SLC11A3) gene

Giuliana Montosi; Adriana Donovan; Angela Totaro; Cinzia Garuti; Elisa Pignatti; Stefano Cassanelli; Cameron C. Trenor; Paolo Gasparini; Nancy C. Andrews; Antonello Pietrangelo

Hemochromatosis is a progressive iron overload disorder that is prevalent among individuals of European descent. It is usually inherited in an autosomal-recessive pattern and associated with missense mutations in HFE, an atypical major histocompatibility class I gene. Recently, we described a large family with autosomal-dominant hemochromatosis not linked to HFE and distinguished by early iron accumulation in reticuloendothelial cells. Through analysis of a large pedigree, we have determined that this disease maps to 2q32. The gene encoding ferroportin (SLC11A3), a transmembrane iron export protein, lies within a candidate interval defined by highly significant lod scores. We show that the iron-loading phenotype in autosomal-dominant hemochromatosis is associated with a nonconservative missense mutation in the ferroportin gene. This missense mutation, converting alanine to aspartic acid at residue 77 (A77D), was not seen in samples from 100 unaffected control individuals. We propose that partial loss of ferroportin function leads to an imbalance in iron distribution and a consequent increase in tissue iron accumulation.


The New England Journal of Medicine | 1999

Hereditary hemochromatosis in adults without pathogenic mutations in the hemochromatosis gene.

Antonello Pietrangelo; Giuliana Montosi; Angela Totaro; Cinzia Garuti; Dario Conte; Stefano Cassanelli; Mirella Fraquelli; Sardini C; Francesco Vasta; Paolo Gasparini

BACKGROUND AND METHODS Hereditary hemochromatosis in adults is usually characterized by mutations in the HFE gene on the short arm of chromosome 6. Most patients have a substitution of tyrosine for cysteine at position 282 (C282Y). We studied a large family from Italy that includes persons who have a hereditary iron-overload condition indistinguishable from hemochromatosis but without apparent pathogenic mutations in the HFE gene. We performed biochemical, histologic, and genetic studies of 53 living members of the family, including microsatellite analysis of chromosome 6 and direct sequencing of the HFE gene. RESULTS Of the 53 family members, 15 had abnormal serum ferritin levels, values for transferrin saturation that were higher than 50 percent, or both. Thirteen of the 15 had elevated body iron levels, diagnosed on the basis of the clinical evaluation and liver biopsy, and underwent iron-removal therapy. The other two, both children, did not undergo liver biopsy or iron-removal therapy. None of the 15 members had the C282Y mutation of the HFE gene; 5 of the 15 (as well as 5 healthy relatives) had another mutation of this gene, a substitution of aspartate for histidine at position 63, but none were homozygous for it. No other mutations were found after sequencing of the entire HFE gene for all family members. Microsatellite analysis showed no linkage of the hemochromatosis phenotype with the short arm of chromosome 6, the site of the HFE gene. CONCLUSIONS Hereditary hemochromatosis can occur in adults who do not have pathogenic mutations in the hemochromatosis gene.


Blood Cells Molecules and Diseases | 2003

Iron overload in Africans and African-Americans and a common mutation in the SCL40A1 (ferroportin 1) gene

Victor R. Gordeuk; Angela Caleffi; Elena Corradini; Francesca Ferrara; Russell A. Jones; Oswaldo Castro; Onyinye Onyekwere; Rick A. Kittles; Elisa Pignatti; Giuliana Montosi; Cinzia Garuti; Innocent T. Gangaidzo; Zvenyika A. R. Gomo; Victor Moyo; Tracey A. Rouault; Patrick MacPhail; Antonello Pietrangelo

The product of the SLC40A1 gene, ferroportin 1, is a main iron export protein. Pathogenic mutations in ferroportin 1 lead to an autosomal dominant hereditary iron overload syndrome characterized by high serum ferritin concentration, normal transferrin saturation, iron accumulation predominantly in macrophages, and marginal anemia. Iron overload occurs in both the African and the African-American populations, but a possible genetic basis has not been established. We analyzed the ferroportin 1 gene in 19 unrelated patients from southern Africa (N = 15) and the United States (N = 4) presenting with primary iron overload. We found a new c. 744 C-->T (Q248H) mutation in the SLC40A1 gene in 4 of these patients (3 Africans and 1 African-American). Among 22 first degree family members, 10 of whom were Q248H heterozygotes, the mutation was associated with a trend to higher serum ferritin to amino aspartate transferase ratios (means of 14.8 versus 4.3 microg/U; P = 0.1) and lower hemoglobin concentrations (means of 11.8 versus 13.2 g/dL; P = 0.1). The ratio corrects serum ferritin concentration for alcohol-induced hepatocellular damage. We also found heterozygosity for the Q248H mutation in 7 of 51 (14%) southern African community control participants selected because they had a serum ferritin concentration below 400 microg/L and in 5 of 100 (5%) anonymous African-Americans, but we did not find the change in 300 Caucasians with normal iron status and 25 Caucasians with non-HFE iron overload. The hemoglobin concentration was significantly lower in the African community controls with the Q248H mutation than in those without it. We conclude that the Q248H mutation is a common polymorphism in the ferroportin 1 gene in African populations that may be associated with mild anemia and a tendency to iron loading.


Gastroenterology | 2009

Bone morphogenetic protein signaling is impaired in an Hfe knockout mouse model of hemochromatosis

Elena Corradini; Cinzia Garuti; Giuliana Montosi; Paolo Ventura; Billy Andriopoulos; Herbert Y. Lin; Antonello Pietrangelo

BACKGROUND AND AIMS Mutations in HFE are the most common cause of the iron-overload disorder hereditary hemochromatosis. Levels of the main iron regulatory hormone, hepcidin, are inappropriately low in hereditary hemochromatosis mouse models and patients with HFE mutations, indicating that HFE regulates hepcidin. The bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway is an important endogenous regulator of hepcidin expression. We investigated whether HFE is involved in BMP6-SMAD regulation of hepcidin expression. METHODS The BMP6-SMAD pathway was examined in Hfe knockout (KO) mice and in wild-type (WT) mice as controls. Mice were placed on diets of varying iron content. Hepcidin induction by BMP6 was examined in primary hepatocytes from Hfe KO mice; data were compared with those of WT mice. RESULTS Liver levels of Bmp6 messenger RNA (mRNA) were higher in Hfe KO mice; these were appropriate for the increased hepatic levels of iron in these mice, compared with WT mice. However, levels of hepatic phosphorylated Smad 1/5/8 protein (an intracellular mediator of Bmp6 signaling) and Id1 mRNA (a target gene of Bmp6) were inappropriately low for the body iron burden and Bmp6 mRNA levels in Hfe KO, compared with WT mice. BMP6 induction of hepcidin expression was reduced in Hfe KO hepatocytes compared with WT hepatocytes. CONCLUSIONS HFE is not involved in regulation of BMP6 by iron, but does regulate the downstream signals of BMP6 that are triggered by iron.


Gastroenterology | 2010

BMP6 treatment compensates for the molecular defect and ameliorates hemochromatosis in Hfe knockout mice

Elena Corradini; Paul J. Schmidt; Delphine Meynard; Cinzia Garuti; Giuliana Montosi; Shanzhuo Chen; Slobodan Vukicevic; Antonello Pietrangelo; Herbert Y. Lin

BACKGROUND & AIMS Abnormal hepcidin regulation is central to the pathogenesis of HFE hemochromatosis. Hepatic bone morphogenetic protein 6 (BMP6)-SMAD signaling is a main regulatory mechanism controlling hepcidin expression, and this pathway was recently shown to be impaired in Hfe knockout (Hfe(-/-)) mice. To more definitively determine whether HFE regulates hepcidin expression through an interaction with the BMP6-SMAD signaling pathway, we investigated whether hepatic Hfe overexpression activates the BMP6-SMAD pathway to induce hepcidin expression. We then investigated whether excess exogenous BMP6 administration overcomes the BMP6-SMAD signaling impairment and ameliorates hemochromatosis in Hfe(-/-) mice. METHODS The BMP6-SMAD pathway and the effects of neutralizing BMP6 antibody were examined in Hfe transgenic mice (Hfe Tg) compared with wild-type (WT) mice. Hfe(-/-) and WT mice were treated with exogenous BMP6 and analyzed for hepcidin expression and iron parameters. RESULTS Hfe Tg mice exhibited hepcidin excess and iron deficiency anemia. Hfe Tg mice also exhibited increased hepatic BMP6-SMAD target gene expression compared with WT mice, whereas anti-BMP6 antibody administration to Hfe Tg mice improved the hepcidin excess and iron deficiency. In Hfe(-/-) mice, supraphysiologic doses of exogenous BMP6 improved hepcidin deficiency, reduced serum iron, and redistributed tissue iron to appropriate storage sites. CONCLUSIONS HFE interacts with the BMP6-SMAD signaling pathway to regulate hepcidin expression, but HFE is not necessary for hepcidin induction by BMP6. Exogenous BMP6 treatment in mice compensates for the molecular defect underlying Hfe hemochromatosis, and BMP6-like agonists may have a role as an alternative therapeutic strategy for this disease.


Journal of Hepatology | 2001

Frequency and biochemical expression of C282Y/H63D hemochromatosis (HFE) gene mutations in the healthy adult population in Italy

Stefano Cassanelli; Elisa Pignatti; Giuliana Montosi; Cinzia Garuti; Maria Mariano; Daniele Campioli; Anna Carbonieri; Erasmo Baldini; Antonello Pietrangelo

BACKGROUND/AIMS The actual prevalence of the main hemochromatosis (HFE) mutations in the Italian adult population and their phenotypic expression have not yet been established. This information is key to advocate a mass-screening program. METHODS Two thousand one hundred adults were tested for the C282Y/H63D HFE gene mutations by an automated genotyping assay as well as transferrin saturation (TS) and serum ferritin levels. RESULTS No homozygotes for the C282Y mutation were found. Heterozygosity for the C282Y mutation was 3.1%, while heterozygosity and homozygosity for the H63D mutation were 21.5% and 2.5%, respectively. TS was significantly higher in C282Y heterozygotes and H63D homozygotes as compared to wild-type individuals (P < 0.01). Interestingly, of the HFE wild-type subjects 5.9% had a TS value above the 45% threshold. CONCLUSIONS This study shows that (i) the predicted prevalence for C282Y homozygosity in Italy is 1:3900; (ii) the C282Y/H63D wild-type population has an increased baseline of iron parameters possibly due to genetic factors not linked to the C282Y/H63D mutations; (iii) since in the latter population the actual tissue iron burden cannot be assessed, phenotypic (TS) screening in Italy is not recommended until the true prevalence of all mutations in the HFE gene and in other hemochromatosis genes will be established.


Hepatology | 2005

Kupffer cells and macrophages are not required for hepatic hepcidin activation during iron overload

Giuliana Montosi; Elena Corradini; Cinzia Garuti; Samuele Barelli; Stefania Recalcati; Gaetano Cairo; Linda Valli; Elisa Pignatti; Chiara Vecchi; Francesca Ferrara; Antonello Pietrangelo

Hepcidin, the iron hormone, is produced by the liver in response to iron and inflammation. Its synthesis during inflammation is triggered by cytokines, but the details of iron activation are obscure. We tested the role of Kupffer cells and macrophages by studying iron‐loaded or inflamed mice with selective inactivation of Kupffer cells or the in vitro effect of conditioned human macrophages on hepcidin expression. Hepcidin messenger RNA (mRNA) expression was studied by Northern blot and reverse transcriptase polymerase chain reaction analysis in mice that were treated with 40 mg/kg gadolinium (III) chloride (GdCl3) as a Kupffer cell inactivating agent and subjected to inflammatory challenges with either lipopolysaccharide (LPS) and turpentine or iron overload by iron‐dextran administration. Similar analyses were performed in human hepatoma cells (HepG2) cultured with medium from LPS‐ or iron‐conditioned macrophages from blood donors or patients with HFE‐linked hereditary hemochromatosis (HH). In vivo, LPS and particularly turpentine stimulated hepcidin mRNA expression, and this effect was prevented by the inactivation of Kupffer cells. Also, iron overload markedly upregulated hepatic hepcidin mRNA, but this activity persisted in spite of Kupffer cell blockade. In vitro, the medium of LPS‐treated normal or hemocromatotic macrophages turned on hepcidin expression. On the contrary, medium of iron‐manipulated macrophages, regardless of their HFE status, did not affect hepcidin mRNA steady‐state levels. In conclusion, Kupffer cells are required for the activation of hepcidin synthesis during inflammation, and HH inflamed macrophages are capable of mounting a normal response, eventually leading to hepcidin stimulation. However, both Kupffer cells and human macrophages are dispensable for the regulatory activity exerted by iron on hepatic hepcidin. (HEPATOLOGY 2005;41:545–552.)


Gastroenterology | 2014

Gluconeogenic Signals Regulate Iron Homeostasis via Hepcidin in Mice

Chiara Vecchi; Giuliana Montosi; Cinzia Garuti; Elena Corradini; Manuela Sabelli; Susanna Canali; Antonello Pietrangelo

Background & Aims Hepatic gluconeogenesis provides fuel during starvation, and is abnormally induced in obese individuals or those with diabetes. Common metabolic disorders associated with active gluconeogenesis and insulin resistance (obesity, metabolic syndrome, diabetes, and nonalcoholic fatty liver disease) have been associated with alterations in iron homeostasis that disrupt insulin sensitivity and promote disease progression. We investigated whether gluconeogenic signals directly control Hepcidin, an important regulator of iron homeostasis, in starving mice (a model of persistently activated gluconeogenesis and insulin resistance). Methods We investigated hepatic regulation of Hepcidin expression in C57BL/6Crl, 129S2/SvPas, BALB/c, and Creb3l3–/– null mice. Mice were fed a standard, iron-balanced chow diet or an iron-deficient diet for 9 days before death, or for 7 days before a 24- to 48-hour starvation period; liver and spleen tissues then were collected and analyzed by quantitative reverse-transcription polymerase chain reaction and immunoblot analyses. Serum levels of iron, hemoglobin, Hepcidin, and glucose also were measured. We analyzed human hepatoma (HepG2) cells and mouse primary hepatocytes to study transcriptional control of Hamp (the gene that encodes Hepcidin) in response to gluconeogenic stimuli using small interfering RNA, luciferase promoter, and chromatin immunoprecipitation analyses. Results Starvation led to increased transcription of the gene that encodes phosphoenolpyruvate carboxykinase 1 (a protein involved in gluconeogenesis) in livers of mice, increased levels of Hepcidin, and degradation of Ferroportin, compared with nonstarved mice. These changes resulted in hypoferremia and iron retention in liver tissue. Livers of starved mice also had increased levels of Ppargc1a mRNA and Creb3l3 mRNA, which encode a transcriptional co-activator involved in energy metabolism and a liver-specific transcription factor, respectively. Glucagon and a cyclic adenosine monophosphate analog increased promoter activity and transcription of Hamp in cultured liver cells; levels of Hamp were reduced after administration of small interfering RNAs against Ppargc1a and Creb3l3. PPARGC1A and CREB3L3 bound the Hamp promoter to activate its transcription in response to a cyclic adenosine monophosphate analog. Creb3l3–/– mice did not up-regulate Hamp or become hypoferremic during starvation. Conclusions We identified a link between glucose and iron homeostasis, showing that Hepcidin is a gluconeogenic sensor in mice during starvation. This response is involved in hepatic metabolic adaptation to increased energy demands; it preserves tissue iron for vital activities during food withdrawal, but can cause excessive iron retention and hypoferremia in disorders with persistently activated gluconeogenesis and insulin resistance.


Journal of Bioenergetics and Biomembranes | 2000

Iron-Induced Oxidant Stress Leads to Irreversible Mitochondrial Dysfunctions and Fibrosis in the Liver of Chronic Iron-Dosed Gerbils. The Effect of Silybin

Alberto Masini; Daniela Ceccarelli; Fabiola Giovannini; Giuliana Montosi; Cinzia Garuti; Antonello Pietrangelo

Hepatic iron toxicity because of iron overload seems to be mediated by lipid peroxidation ofbiological membranes and the associated organelle dysfunctions. However, the basicmechanisms underlying this process in vivo are still little understood. Gerbils were dosed with weeklyinjections of iron—dextran alone or in combination with sylibin, a well—known antioxidant,by gavage for 8 weeks. A strict correlation was found between lipid peroxidation and the levelof desferrioxamine chelatable iron pool. A consequent derangement in the mitochondrialenergy-transducing capability, resulting from a reduction in the respiratory chain enzymeactivities, occurred. These irreversible oxidative anomalies brought about a dramatic drop intissue ATP level. The mitochondrial oxidative derangement was associated with thedevelopment of fibrosis in the hepatic tissue. Silybin administration significantly reduced bothfunctional anomalies and the fibrotic process by chelating desferrioxamine chelatable iron.


Journal of Bioenergetics and Biomembranes | 2002

Iron-Induced Oxidant Stress in Nonparenchymal Liver Cells: Mitochondrial Derangement and Fibrosis in Acutely Iron-Dosed Gerbils and Its Prevention by Silybin

Antonello Pietrangelo; Giuliana Montosi; Cinzia Garuti; Miranda Contri; Fabiola Giovannini; Daniela Ceccarelli; Alberto Masini

Hepatic fibrosis due to iron overload is mediated by oxidant stress. The basic mechanisms underlying this process in vivo are still little understood. Acutely iron-dosed gerbils were assayed for lobular accumulation of hepatic lipid peroxidation by-products, oxidant-stress gene response, mitochondrial energy-dependent functions, and fibrogenesis. Iron overload in nonparenchymal cells caused an activation of hepatic stellate cells and fibrogenesis. Oxidant-stress gene response and accumulation of malondialdehyde–protein adducts were restricted to iron-filled nonparenchymal cells, sparing nearby hepatocytes. Concomitantly, a significant rise in the mitochondrial desferrioxamine-chelatable iron pool associated with the impairment of mitochondrial oxidative metabolism and the hepatic ATP decrease, was detected. Ultrastructural mitochondrial alterations were observed only in nonparenchymal cells. All biochemical and functional derangements were hindered by in vivo silybin administration which blocked completely fibrogenesis. Iron-induced oxidant stress in nonparenchymal cells appeared to bring about irreversible mitochondrial derangement associated with the onset of hepatic fibrosis.

Collaboration


Dive into the Cinzia Garuti's collaboration.

Top Co-Authors

Avatar

Antonello Pietrangelo

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Giuliana Montosi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Elena Corradini

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Elisa Pignatti

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Angela Caleffi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Francesca Ferrara

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Paolo Ventura

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Chiara Vecchi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Samuele Barelli

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge