Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cinzia Pezzella is active.

Publication


Featured researches published by Cinzia Pezzella.


Cellular and Molecular Life Sciences | 2010

Laccases: a never-ending story

Paola Giardina; Vincenza Faraco; Cinzia Pezzella; Alessandra Piscitelli; Sophie Vanhulle; Giovanni Sannia

Laccases (benzenediol:oxygen oxidoreductases, EC 1.10.3.2) are blue multicopper oxidases that catalyze the oxidation of an array of aromatic substrates concomitantly with the reduction of molecular oxygen to water. In fungi, laccases carry out a variety of physiological roles during their life cycle. These enzymes are being increasingly evaluated for a variety of biotechnological applications due to their broad substrate range. In this review, the most recent studies on laccase structural features and catalytic mechanisms along with analyses of their expression are reported and examined with the aim of contributing to the discussion on their structure–function relationships. Attention has also been paid to the properties of enzymes endowed with unique characteristics and to fungal laccase multigene families and their organization.


Current Genomics | 2011

Induction and transcriptional regulation of laccases in fungi.

Alessandra Piscitelli; Paola Giardina; Vincenzo Lettera; Cinzia Pezzella; Giovanni Sannia; Vincenza Faraco

Fungal laccases are phenol oxidases widely studied for their use in several industrial applications, including pulp bleaching in paper industry, dye decolourisation, detoxification of environmental pollutants and revalorization of wastes and wastewaters. The main difficulty in using these enzymes at industrial scale ensues from their production costs. Elucidation of the components and the mechanisms involved in regulation of laccase gene expression is crucial for increasing the productivity of native laccases in fungi. Laccase gene transcription is regulated by metal ions, various aromatic compounds related to lignin or lignin derivatives, nitrogen and carbon sources. In this manuscript, most of the published results on fungal laccase induction, as well as analyses of both the sequences and putative functions of laccase gene promoters are reviewed. Analyses of promoter sequences allow defining a correlation between the observed regulatory effects on laccase gene transcription and the presence of specific responsive elements, and postulating, in some cases, a mechanism for their functioning. Only few reports have investigated the molecular mechanisms underlying laccase regulation by different stimuli. The reported analyses suggest the existence of a complex picture of laccase regulation phenomena acting through a variety of cis acting elements. However, the general mechanisms for laccase transcriptional regulation are far from being unravelled yet.


Water Research | 2008

Decolourisation and detoxification of textile effluents by fungal biosorption

Valeria Prigione; Valeria Tigini; Cinzia Pezzella; A. Anastasi; Giovanni Sannia; Giovanna Cristina Varese

Textile effluents, in addition to high COD, display several problems mainly due to toxicity and recalcitrance of dyestuffs. Innovative technologies effective in removing dyes from large volumes of effluents at low cost and in a timely fashion are needed. Fungi are among the most promising organisms for dye biosorption. In this study dye decolourisation, COD and toxicity decrease of three wastewater models after the treatment with inactivated biomasses of three Mucorales fungi cultured on two different media were evaluated. Fungal biomasses displayed good sorption capabilities giving rise to decolourisation percentages up to 94% and decrease in COD up to 58%. The Lemna minor toxicity test showed a significant reduction of toxicity after biosorption treatments, indicating that decolourisation corresponds to an actual detoxification of the treated wastewaters.


Current Genetics | 2009

The Pleurotus ostreatus laccase multi-gene family: isolation and heterologous expression of new family members

Cinzia Pezzella; Flavia Autore; Paola Giardina; Alessandra Piscitelli; Giovanni Sannia; Vincenza Faraco

This work was aimed at identifying and at characterizing new Pleurotus ostreatus laccases, in order to individuate the most suitable biocatalysts for specific applications. The existence of a laccase gene clustering was demonstrated in this basidiomycete fungus, and three new laccase genes were cloned, taking advantage of their closely related spatial organization on the fungus genome. cDNAs coding for two of the new laccases were isolated and expressed in the yeasts Saccharomyces cerevisiae and Kluyveromyces lactis, in order to optimize their production and to characterize the recombinant proteins. Analysis of the P. ostreatus laccase gene family allowed the identification of a “laccase subfamily” consisting of three genes. A peculiar intron–exon structure was revealed for the gene of one of the new laccases, along with a high instability of the recombinant enzyme due to lability of its copper ligand. This study allowed enlarging the assortment of P. ostreatus laccases and increasing knowledge to improve laccase production.


Bioengineered bugs | 2010

Heterologous laccase production and its role in industrial applications

Alessandra Piscitelli; Cinzia Pezzella; Paola Giardina; Vincenza Faraco; Giovanni Sannia

Laccases are blue multicopper oxidases, catalyzing the oxidation of an array of aromatic substrates concomitantly with the reduction of molecular oxygen to water. These enzymes are implicated in a variety of biological activities. Most of the laccases studied thus far are of fungal origin. The large range of substrates oxidized by laccases has raised interest in using them within different industrial fields, such as pulp delignification, textile dye bleaching, and bioremediation. Laccases secreted from native sources are usually not suitable for large-scale purposes, mainly due to low production yields and high cost of preparation/purification procedures. Heterologous expression may provide higher enzyme yields and may permit to produce laccases with desired properties (such as different substrate specificities, or improved stabilities) for industrial applications. This review surveys researches on heterologous laccase expression focusing on the pivotal role played by recombinant systems towards the development of robust tools for greening modern industry.


Applied Microbiology and Biotechnology | 2013

Transcriptional analysis of Pleurotus ostreatus laccase genes.

Cinzia Pezzella; Vincenzo Lettera; Alessandra Piscitelli; Paola Giardina; Giovanni Sannia

Fungal laccases (p-diphenol:oxygen oxidoreductase; EC 1.10.3.2) are multi-copper-containing oxidases that catalyse the oxidation of a great variety of phenolic compounds and aromatic amines through simultaneous reduction of molecular oxygen to water. Fungi generally produce several laccase isoenzymes encoded by complex multi-gene families. The Pleurotus ostreatus genome encodes 11 putative laccase coding genes, and only six different laccase isoenzymes have been isolated and characterised so far. Laccase expression was found to be regulated by culture conditions and developmental stages even if the redundancy of these genes still raises the question about their respective functions in vivo. In this context, laccase transcript profiling analysis has been used to unravel the physiological role played by the different isoforms produced by P. ostreatus. Even if reported results depict a complex picture of the transcriptional responses exhibited by the analysed laccase genes, they were allowed to speculate on the isoform role in vivo. Among the produced laccases, LACC10 (POXC) seems to play a major role during vegetative growth, since its transcription is downregulated when the fungus starts the fructification process. Furthermore, a new tessera has been added to the puzzling mosaic of the heterodimeric laccase LACC2 (POXA3). LACC2 small subunit seems to play an additional physiological role during fructification, beside that of LACC2 complex activation/stabilisation.


Fungal Biology | 2010

Identification of a new member of Pleurotus ostreatus laccase family from mature fruiting body.

Vincenzo Lettera; Alessandra Piscitelli; Gabriella Leo; Leila Birolo; Cinzia Pezzella; Giovanni Sannia

Laccases (benzenediol:oxygen oxidoreductases, EC 1.10.3.2) are blue multicopper oxidases, catalyzing the oxidation of an array of aromatic substrates concomitantly with the reduction of molecular oxygen to water. Most of the known laccases have fungal or plant origins, although few laccases have been also identified in bacteria and insects. Most of the fungal laccases reported thus far are extra-cellular enzymes, whereas only few enzymes from fruiting bodies have been described so far. Multiple isoforms of laccases are usually secreted by each fungus depending on species and environmental conditions. As a fact, a laccase gene family has been demonstrated in the white-rot fungus Pleurotus ostreatus. This work allowed identification and characterization of the first laccase isoenzyme from the fruiting body of P. ostreatus. Discovery through mass spectrometry of LACC12 proves the expression of a functional protein by the related deduced encoding transcript. The topology of phylogenetic tree of fungal laccases proves that LACC12 falls in cluster with the members of P. ostreatus LACC10 (=POXC) subfamily, although lacc12 deduced intron-exon structure differs from that of the subfamily members and the related locus is located in a different chromosome. Results show that the evolutionary pattern of lacc12 and that of the other laccase isozyme genes may have evolved independently, possibly through duplication-divergence events. The reported data add a new piece to the knowledge about P. ostreatus laccase multigene family and shed light on the role(s) played by individual laccase isoforms in P. ostreatus.


Food Chemistry | 2016

Efficient immobilization of a fungal laccase and its exploitation in fruit juice clarification.

Vincenzo Lettera; Cinzia Pezzella; Paola Cicatiello; Alessandra Piscitelli; Valerio Guido Giacobelli; Eugenio Galano; Angela Amoresano; Giovanni Sannia

The clarification step represents, in fruit juices industries, a bottleneck process because residual phenols cause severe haze formation affecting juice quality and impairing customers acceptance. An enzymatic step can be efficiently integrated in the process, and use of immobilized enzymes entails an economical advantage. In this work, covalent immobilization of recombinant POXA1b laccase from Pleurotus ostreatus on epoxy activated poly(methacrylate) beads was optimized thanks to a Response Surface Methodologies approach. Through regression analysis the process was well fitted by a quadratic polynomial equation (R(2)=0.9367, adjusted R(2)=0.8226) under which laccase activity reached 2000 ± 100 Ug(-1) of beads, with an immobilization efficiency of 98%. The immobilized biocatalyst was characterized and then tested in fruit juice clarification reaching up to 45% phenol reduction, without affecting health-effective flavanones content. Furthermore, laccase treated juice displays an improved sensory profile, due to the reduction of vinyl guaiacol, a potent off-flavor possessing a peppery/spicy aroma.


BioMed Research International | 2014

Fungal Laccases Degradation of Endocrine Disrupting Compounds

Gemma Macellaro; Cinzia Pezzella; Paola Cicatiello; Giovanni Sannia; Alessandra Piscitelli

Over the past decades, water pollution by trace organic compounds (ng/L) has become one of the key environmental issues in developed countries. This is the case of the emerging contaminants called endocrine disrupting compounds (EDCs). EDCs are a new class of environmental pollutants able to mimic or antagonize the effects of endogenous hormones, and are recently drawing scientific and public attention. Their widespread presence in the environment solicits the need of their removal from the contaminated sites. One promising approach to face this challenge consists in the use of enzymatic systems able to react with these molecules. Among the possible enzymes, oxidative enzymes are attracting increasing attention because of their versatility, the possibility to produce them on large scale, and to modify their properties. In this study five different EDCs were treated with four different fungal laccases, also in the presence of both synthetic and natural mediators. Mediators significantly increased the efficiency of the enzymatic treatment, promoting the degradation of substrates recalcitrant to laccase oxidation. The laccase showing the best performances was chosen to further investigate its oxidative capabilities against micropollutant mixtures. Improvement of enzyme performances in nonylphenol degradation rate was achieved through immobilization on glass beads.


BioMed Research International | 2014

Immobilization of a Pleurotus ostreatus Laccase Mixture on Perlite and Its Application to Dye Decolourisation

Cinzia Pezzella; Maria Elena Russo; Antonio Marzocchella; Piero Salatino; Giovanni Sannia

In the present study, a crude laccase preparation from Pleurotus ostreatus was successfully immobilized on perlite, a cheap porous silica material, and tested for Remazol Brilliant Blue R (RBBR) decolourisation in a fluidized bed recycle reactor. Results showed that RBBR decolourisation is mainly due to enzyme action despite the occurrence of dye adsorption-related enzyme inhibition. Fine tuning of immobilization conditions allowed balancing the immobilization yield and the resulting rate of decolourisation, with the adsorption capacity of the solid biocatalyst. In the continuous lab scale reactor, a maximum conversion degree of 56.1% was achieved at reactor space-time of 4.2 h. Stability and catalytic parameters of the immobilized laccases were also assessed in comparison with the soluble counterparts, revealing an increase in stability, despite a reduction of the catalytic performances. Both effects are most likely ascribable to the occurrence of multipoint attachment phenomena.

Collaboration


Dive into the Cinzia Pezzella's collaboration.

Top Co-Authors

Avatar

Giovanni Sannia

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Alessandra Piscitelli

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincenza Faraco

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Vincenzo Lettera

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Gemma Macellaro

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Valerio Guido Giacobelli

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Angela Casillo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Marco Vastano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Paola Cicatiello

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge