Ciro Iaccarino
University of Sassari
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ciro Iaccarino.
International Journal of Nanomedicine | 2014
Vanna Sanna; Nicolino Pala; Giuseppina Dessì; Paola Maria Manconi; Alberto Mariani; Sonia Dedola; Mauro Rassu; Claudia Crosio; Ciro Iaccarino; Mario Sechi
Background Gold nanoparticles (GNPs) are likely to provide an attractive platform for combining a variety of biophysicochemical properties into a unified nanodevice with great therapeutic potential. In this study we investigated the capabilities of three different natural polyphenols, epigallocatechin-3-gallate (EGCG), resveratrol (RSV), and fisetin (FS), to allow synergistic chemical reduction of gold salts to GNPs and stabilization in a single-step green process. Moreover, antioxidant properties of the nanosystems, as well as preliminary antiproliferative activity and apoptotic process investigation of model EGCG-GNPs on stable clones of neuroblastoma SH-SY5Y cells expressing CFP-DEVD-YFP reporter, were examined. Methods The GNPs were characterized by physicochemical techniques, polyphenol content, and in vitro stability. The antioxidant activity of the GNPs was also determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) cation (ABTS) radical-scavenging assays. Stable clones of neuronal SH-SY5Y-CFP-DEVD-YFP were generated and characterized, and cell viability after treatment with EGCG-GNPs was assessed after 72 hours through a 3(4,5-dimethylthiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. Activation of the apoptotic pathways was also investigated by Western blot analysis. Results With a diameter in the size range of 10–25 nm, the obtained nanoparticles (NPs) were found to contain 2.71%, 3.23%, and 5.47% of EGCG, RSV, and FS, respectively. Nanoprototypes exhibited remarkable in vitro stability in various media, suggesting that NP surface coating with phytochemicals prevents aggregation in different simulated physiological conditions. The scavenging activities for DPPH and ABTS were highly correlated with EGCG, RSV, and FS content. Moreover, high correlation coefficients between the ABTS and DPPH values were found for the prepared nanosystems. EGCG-GNPs induce a dose-dependent reduction on SH-SY5Y-CFP-DEVD-YFP cell viability that is likely to involve the activation of the apoptotic pathways, similarly to free EGCG, as suggested by the processing of the CFP-DEVD-YFP reporter. Conclusion These results prompted us to propose the ecofriendly synthesized EGCG-, RSV-, and FS-based nanogold conjugates as suitable carriers for bioactive polyphenols to be used for the treatment of disorders associated with oxidative stress, including neurodegenerative disorders, cardiovascular disease, and cancer.
PLOS ONE | 2013
Rossana Migheli; Maria Grazia Del Giudice; Ylenia Spissu; Giovanna Sanna; Yulan Xiong; Ted M. Dawson; Valina L. Dawson; Manuela Galioto; Gaia Rocchitta; Alice Biosa; Pier Andrea Serra; Maria Teresa Carrì; Claudia Crosio; Ciro Iaccarino
The leucine-rich repeat kinase 2 (LRRK2) gene was found to play a role in the pathogenesis of both familial and sporadic Parkinson’s disease (PD). LRRK2 encodes a large multi-domain protein that is expressed in different tissues. To date, the physiological and pathological functions of LRRK2 are not clearly defined. In this study we have explored the role of LRRK2 in controlling vesicle trafficking in different cellular or animal models and using various readouts. In neuronal cells, the presence of LRRK2G2019S pathological mutant determines increased extracellular dopamine levels either under basal conditions or upon nicotine stimulation. Moreover, mutant LRRK2 affects the levels of dopamine receptor D1 on the membrane surface in neuronal cells or animal models. Ultrastructural analysis of PC12-derived cells expressing mutant LRRK2G2019S shows an altered intracellular vesicle distribution. Taken together, our results point to the key role of LRRK2 to control vesicle trafficking in neuronal cells.
PLOS ONE | 2011
Claudia Crosio; Cristiana Valle; Arianna Casciati; Ciro Iaccarino; Maria Teresa Carrì
Motor neuron death in amyotrophic lateral sclerosis (ALS) is considered a “non-cell autonomous” process, with astrocytes playing a critical role in disease progression. Glial cells are activated early in transgenic mice expressing mutant SOD1, suggesting that neuroinflammation has a relevant role in the cascade of events that trigger the death of motor neurons. An inflammatory cascade including COX2 expression, secretion of cytokines and release of NO from astrocytes may descend from activation of a NF-κB-mediated pathway observed in astrocytes from ALS patients and in experimental models. We have attempted rescue of transgenic mutant SOD1 mice through the inhibition of the NF-κB pathway selectively in astrocytes. Here we show that despite efficient inhibition of this major pathway, double transgenic mice expressing the mutant SOD1G93A ubiquitously and the dominant negative form of IκBα (IκBαAA) in astrocytes under control of the GFAP promoter show no benefit in terms of onset and progression of disease. Our data indicate that motor neuron death in ALS cannot be prevented by inhibition of a single inflammatory pathway because alternative pathways are activated in the presence of a persistent toxic stimulus.
Journal of Neurochemistry | 2014
Lauran Reyniers; Maria Grazia Del Giudice; Laura Civiero; Elisa Belluzzi; Evy Lobbestael; Alexandra Beilina; Giorgio Arrigoni; Rita Derua; Etienne Waelkens; Yan Li; Claudia Crosio; Ciro Iaccarino; Mark R. Cookson; Veerle Baekelandt; Elisa Greggio; Jean-Marc Taymans
Genetic studies show that LRRK2, and not its closest paralogue LRRK1, is linked to Parkinsons disease. To gain insight into the molecular and cellular basis of this discrepancy, we searched for LRRK1‐ and LRRK2‐specific cellular processes by identifying their distinct interacting proteins. A protein microarray‐based interaction screen was performed with recombinant 3xFlag‐LRRK1 and 3xFlag‐LRRK2 and, in parallel, co‐immunoprecipitation followed by mass spectrometry was performed from SH‐SY5Y neuroblastoma cell lines stably expressing 3xFlag‐LRRK1 or 3xFlag‐LRRK2. We identified a set of LRRK1‐ and LRRK2‐specific as well as common interactors. One of our most prominent findings was that both screens pointed to epidermal growth factor receptor (EGF‐R) as a LRRK1‐specific interactor, while 14‐3‐3 proteins were LRRK2‐specific. This is consistent with phosphosite mapping of LRRK1, revealing phosphosites outside of 14‐3‐3 consensus binding motifs. To assess the functional relevance of these interactions, SH‐SY5Y‐LRRK1 and ‐LRRK2 cell lines were treated with LRRK2 kinase inhibitors that disrupt 14‐3‐3 binding, or with EGF, an EGF‐R agonist. Redistribution of LRRK2, not LRRK1, from diffuse cytoplasmic to filamentous aggregates was observed after inhibitor treatment. Similarly, EGF induced translocation of LRRK1, but not of LRRK2, to endosomes. Our study confirms that LRRK1 and LRRK2 can carry out distinct functions by interacting with different cellular proteins.
Cell Death & Differentiation | 2006
Claudia Crosio; Arianna Casciati; Ciro Iaccarino; Giuseppe Rotilio; Maria Teresa Carrì
Several studies have indicated that apoptotic pathways are responsible for the loss of motor neurons that constitutes the hallmark of adult-onset neurodegenerative disease amyotrophic lateral sclerosis (ALS). In this study we demonstrate that motoneuronal death induced by the expression of mutant Cu,Zn superoxide dismutase (SOD1) typical of familial ALS is mediated by Bcl2a1, a protein belonging to the Bcl2 family. Bcl2a1 is the only member of this family to be up-regulated selectively in spinal motor neurons of mice transgenic for G93A-SOD1 already at the asymptomatic stage. Bcl2a1 over-expression is restricted to motor neurons, it is not depending on the genetic background of mice and it is not due to a general activation of NF- k B-regulated genes. Over-expression of Bcl2a1 is protective against death of neuronal cells induced by expression of G93A-SOD1 but is detrimental upon stimulation of those cells with tumor necrosis factor. Since this factor is known to contribute to the complex molecular cross-talk among different cell types taking place in the pathogenesis of ALS, we propose that the increase in Bcl2a1 is a triggering event in the progressive loss of motor neurons occurring in this disease.
PLOS ONE | 2017
Mauro Rassu; Maria Grazia Del Giudice; Simona Sanna; Jean Marc Taymans; Michele Morari; Alberto Brugnoli; Martina Frassineti; Alessandra Masala; Sonia Esposito; Manuela Galioto; Cristiana Valle; Maria Teresa Carrì; Alice Biosa; Elisa Greggio; Claudia Crosio; Ciro Iaccarino
Mutations in LRRK2 play a critical role in both familial and sporadic Parkinson’s disease (PD). Up to date, the role of LRRK2 in PD onset and progression remains largely unknown. However, experimental evidence highlights a critical role of LRRK2 in the control of vesicle trafficking that in turn may regulate different aspects of neuronal physiology. We have analyzed the role of LRRK2 in regulating dopamine receptor D1 (DRD1) and D2 (DRD2) trafficking. DRD1 and DRD2 are the most abundant dopamine receptors in the brain. They differ in structural, pharmacological and biochemical properties, as well as in localization and internalization mechanisms. Our results indicate that disease-associated mutant G2019S LRRK2 impairs DRD1 internalization, leading to an alteration in signal transduction. Moreover, the mutant forms of LRRK2 affect receptor turnover by decreasing the rate of DRD2 trafficking from the Golgi complex to the cell membrane. Collectively, our findings are consistent with the conclusion that LRRK2 influences the motility of neuronal vesicles and the neuronal receptor trafficking. These findings have important implications for the complex role that LRRK2 plays in neuronal physiology and the possible pathological mechanisms that may lead to neuronal death in PD.
Neurobiology of Disease | 2011
Ciro Iaccarino; Maria Elena Mura; Sonia Esposito; Franco Carta; Giovanna Sanna; Francesco Michelangelo Turrini; Maria Teresa Carrì; Claudia Crosio
Expression of mutant SOD1 typical of familial amyotrophic lateral sclerosis (ALS) induces the expression of Bcl2-A1, a member of the Bcl2 family of proteins, specifically in motor neurons of transgenic mice. In this work, we have used immortalized motor neurons (NSC-34) and transgenic mice expressing mutant SOD1 to unravel the molecular mechanisms and the biological meaning of this up-regulation. We report that up-regulation of Bcl2-A1 by mutant SOD1 is mediated by activation of the redox sensitive transcription factor AP1 and that Bcl2-A1 interacts with pro-caspase-3 via its C-terminal helix α9. Furthermore, Bcl2-A1 inhibits pro-caspase-3 activation in immortalized motor neurons expressing mutant SOD1 and thus induction of Bcl2-A1 in ALS mice represents a pro-survival strategy aimed at counteracting the toxic effects of mutant SOD1. These data provide significant new insights on how molecular signaling, driven by expression of the ALS-causative gene SOD1, affects regulation of apoptosis in motor neurons and thus may have implications for ALS therapy, where prevention of motor neuronal cell death is one of the major aims.
ACS Medicinal Chemistry Letters | 2017
Roberta Cadoni; Nicolino Pala; Carrie L. Lomelino; Brian P. Mahon; Robert McKenna; Roberto Dallocchio; Alessandro Dessì; Mauro Carcelli; Dominga Rogolino; Vanna Sanna; Mauro Rassu; Ciro Iaccarino; Daniela Vullo; Claudiu T. Supuran; Mario Sechi
We report the synthesis, biological evaluation, and structural study of a series of substituted heteroaryl-pyrazole carboxylic acid derivatives. These compounds have been developed as inhibitors of specific isoforms of carbonic anhydrase (CA), with potential as prototypes of a new class of chemotherapeutics. Both X-ray crystallography and computational modeling provide insights into the CA inhibition mechanism. Results indicate that this chemotype produces an indirect interference with the zinc ion, thus behaving differently from other related nonclassical inhibitors. Among the tested compounds, 2c with Ki = 0.21 μM toward hCA XII demonstrated significant antiproliferative activity against hypoxic tumor cell lines. Taken together, the results thus provide the basis of structural determinants for the development of novel anticancer agents.
Neuroscience | 2018
Alessandra Masala; Simona Sanna; Sonia Esposito; Mauro Rassu; Manuela Galioto; Angelo Zinellu; Ciriaco Carru; Maria Teresa Carrì; Ciro Iaccarino; Claudia Crosio
Neurodegenerative disorders, including Amyotrophic Lateral Sclerosis (ALS), have been associated to alterations in chromatin structure resulting in long-lasting changes in gene expression. ALS is predominantly a sporadic disease and environmental triggers may be involved in its onset. In this respect, alterations in the epigenome can provide the key to transform the genetic information into phenotype. In this paper, we demonstrate that two modifications associated with transcriptional activation, namely dimethylation of lysine 4 on H3 tail (H3K4me2) and phospho-acetylation of serine 10 and lysine 14 on H3 tail (H3K14ac-S10ph), and two modifications associated to transcriptional repression, namely trimethylation of lysine 9 on H3 tail (H3K9me3) and DNA methylation are selectively altered in cellular and animal model of ALS. These results reinforce the idea that epigenetic therapy may represent a potential and attractive approach for ALS treatment.
Reviews in The Neurosciences | 2017
Sonia Esposito; Alessandra Masala; Simona Sanna; Mauro Rassu; Viengsavanh Pimxayvong; Ciro Iaccarino; Claudia Crosio
Abstract Redox processes are key events in the degenerative cascade of many adult-onset neurodegenerative diseases (NDs), but the biological relevance of a single redox change is often dependent on the redox couple involved and on its subcellular origin. The biosensors based on engineered fluorescent proteins (redox-sensitive GFP [roGFP]) offer a unique opportunity to monitor redox changes in both physiological and pathological contexts in living animals and plants. Here, we review the use of roGFPs to monitor oxidative stress in different three adult-onset NDs: Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Despite the many differences spanning from incidence to onset, the hypotheses on biological processes underlying both sporadic and familiar ND forms in humans outline a model in which noncompeting mechanisms are likely to converge in various unsuccessful patterns to mediate the selective degeneration of a specific neuronal population. roGFPs, targeted to different cell compartments, are successfully used as specific markers of cell toxicity, induced by expression of causative genes linked to a determined ND. We also report the use of roGFP to monitor oxidative stress induced by the expression of the ALS-causative gene SOD1.