Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire A. Butler is active.

Publication


Featured researches published by Claire A. Butler.


The Journal of Allergy and Clinical Immunology | 2012

Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma.

Aarti Shikotra; David F. Choy; Chandra M. Ohri; Emma Doran; Claire A. Butler; Beverley Hargadon; Maria Shelley; Alexander R. Abbas; Cary D. Austin; Janet Jackman; Lawren C. Wu; Liam Heaney; Joseph R. Arron; Peter Bradding

BACKGROUND Thymic stromal lymphopoietin (TSLP) is a cytokine implicated in the pathophysiology of asthma through 2 distinct pathways: a TSLP-OX40 ligand (OX40L)-T cell axis and a TSLP-mast cell axis. Whether these pathways are active in human asthma is unknown. OBJECTIVE We sought to investigate whether mucosal TSLP protein expression relates to asthma severity and distinct immunologic pathways. METHODS In healthy subjects and patients with mild-to-severe asthma, we immunostained bronchial biopsy specimens for TSLP, OX40, OX40L, T(H)2 cytokines, and inflammatory cell markers. We examined gene expression using RNA microarrays and quantitative RT-PCR. RESULTS There was considerable heterogeneity in the levels of TSLP, IL-13, and IL-4 immunostaining across the cohort of asthmatic patients examined. Overall, TSLP protein expression was significantly increased in airway epithelium and lamina propria of asthmatic patients, particularly in patients with severe asthma. TSLP immunostaining in both compartments correlated with the severity of airflow obstruction. The majority of leukocytes expressing IL-13 were possibly nuocytes. Accounting for intersubject variability, the 55% of asthmatic patients with increased IL-13 immunostaining in the lamina propria also had increased IL-4 and TSLP expression. This was further substantiated by significant correlations between TSLP gene expression, a T(H)2 gene expression signature, and eosinophilic inflammation in bronchial biopsy specimens. Immunostaining for OX40, OX40L, and CD83 was sparse, with no difference between asthmatic patients and healthy subjects. CONCLUSION TSLP expression is increased in a subset of patients with severe asthma in spite of high-dose inhaled or oral corticosteroid therapy. Targeting TSLP might only be efficacious in the subset of asthma characterized by increased TSLP expression and T(H)2 inflammation.


Science Translational Medicine | 2015

TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma

David F. Choy; Kevin M. Hart; Lee A. Borthwick; Aarti Shikotra; Deepti R. Nagarkar; Salman Siddiqui; Guiquan Jia; Chandra M. Ohri; Emma Doran; Kevin M. Vannella; Claire A. Butler; Beverley Hargadon; Joshua Sciurba; Richard L. Gieseck; Robert W. Thompson; Sandra White; Alexander R. Abbas; Janet Jackman; Lawren C. Wu; Jackson G. Egen; Liam Heaney; Thirumalai R. Ramalingam; Joseph R. Arron; Thomas A. Wynn; Peter Bradding

Concurrent blockade of IL-13 and IL-17A may improve control of asthma. A tale of two asthmas Classifying diseases according to symptoms is rapidly becoming a thing of the past. Targeted therapeutics have shown us that sets of symptoms can be caused by different pathogenic mechanisms. Now, Choy et al. demonstrate that asthma can be divided into three immunological clusters: TH2-high, TH17-high, and TH2/17-low. The TH2-high and TH17-high clusters were inversely correlated in patients. Moreover, neutralizing one signature promoted the other in a mouse model of asthma. These data suggest that combination therapies targeting both pathways may better treat asthmatic individuals. Increasing evidence suggests that asthma is a heterogeneous disorder regulated by distinct molecular mechanisms. In a cross-sectional study of asthmatics of varying severity (n = 51), endobronchial tissue gene expression analysis revealed three major patient clusters: TH2-high, TH17-high, and TH2/17-low. TH2-high and TH17-high patterns were mutually exclusive in individual patient samples, and their gene signatures were inversely correlated and differentially regulated by interleukin-13 (IL-13) and IL-17A. To understand this dichotomous pattern of T helper 2 (TH2) and TH17 signatures, we investigated the potential of type 2 cytokine suppression in promoting TH17 responses in a preclinical model of allergen-induced asthma. Neutralization of IL-4 and/or IL-13 resulted in increased TH17 cells and neutrophilic inflammation in the lung. However, neutralization of IL-13 and IL-17 protected mice from eosinophilia, mucus hyperplasia, and airway hyperreactivity and abolished the neutrophilic inflammation, suggesting that combination therapies targeting both pathways may maximize therapeutic efficacy across a patient population comprising both TH2 and TH17 endotypes.


Thorax | 2012

Glucocorticoid receptor β and histone deacetylase 1 and 2 expression in the airways of severe asthma

Claire A. Butler; S. McQuaid; Clifford C. Taggart; Sinéad Weldon; R Carter; Grzegorz Skibinski; Tj Warke; David F. Choy; Lorcan McGarvey; Peter Bradding; Arron; Liam Heaney

Rationale Upregulation of glucocorticoid receptor β (GRβ) has been implicated in steroid resistance in severe asthma, although previous studies are conflicting. GRβ has been proposed as a dominant negative isoform of glucocorticoid receptor α (GRα) but it has also been suggested that GRβ can cause steroid resistance via reduced expression of histone deacetylase 2 (HDAC2), a key regulator of steroid responsiveness in the airway. Objectives To examine GRβ, GRα, HDAC1 and HDAC2 expression at transcript and protein levels in bronchial biopsies from a large series of patients with severe asthma, and to compare the findings with those of patients with mild to moderate asthma and healthy volunteers. Methods Bronchoscopic study in two UK centres with real-time PCR and immunohistochemistry performed on biopsies, western blotting of bronchial epithelial cells and immunoprecipitation with anti-GRβ antibody. Measurements and main results Protein and mRNA expression for GRα and HDAC2 did not differ between groups. GRβ mRNA was detected in only 13 of 73 samples (seven patients with severe asthma), however immunohistochemistry showed widespread epithelial staining in all groups. Western blotting of bronchial epithelial cells with GRβ antibody detected an additional ‘cross-reacting’ protein, identified as clathrin. HDAC1 expression was increased in patients with severe asthma compared with healthy volunteers. Conclusions GRβ mRNA is expressed at low levels in a minority of patients with severe asthma. HDAC1 and HDAC2 expression was not downregulated in severe asthma. These data do not support upregulated GRβ and resultant reduced HDAC expression as the principal mechanism of steroid resistance in severe asthma. Conflicting GRβ literature may be explained in part by clathrin cross-reactivity with commercial antibodies.


The Journal of Allergy and Clinical Immunology | 2014

Asthma and lower airway diseaseIncreased expression of bronchial epithelial transient receptor potential vanilloid 1 channels in patients with severe asthma

Lorcan McGarvey; Claire A. Butler; Susan Stokesberry; Liam Polley; Stephen McQuaid; Hani’ah Abdullah; Sadaf Ashraf; Mary K. McGahon; Tim M. Curtis; Joe Arron; David F. Choy; Tim J. Warke; Peter Bradding; Madeleine Ennis; Alexander Zholos; Richard W. Costello; Liam Heaney

BACKGROUND The airway epithelium is exposed to a range of physical and chemical irritants in the environment that are known to trigger asthma. Transient receptor potential (TRP) cation channels play a central role in sensory responses to noxious physical and chemical stimuli. Recent genetic evidence suggests an involvement of transient receptor potential vanilloid 1 (TRPV1), one member of the vanilloid subfamily of TRP channels, in the pathophysiology of asthma. The functional expression of TRPV1 on airway epithelium has yet to be elucidated. OBJECTIVE In this study we examined the molecular, functional, and immunohistochemical expression of TRPV1 in asthmatic and healthy airways. METHODS Bronchial biopsy specimens and bronchial brushings were obtained from healthy volunteers (n = 18), patients with mild-to-moderate asthma (n = 24), and patients with refractory asthma (n = 22). Cultured primary bronchial epithelial cells from patients with mild asthma (n = 4), nonasthmatic coughers (n = 4), and healthy subjects (n = 4) were studied to investigate the functional role of TRPV1. RESULTS Quantitative immunohistochemistry revealed significantly more TRPV1 expression in asthmatic patients compared with healthy subjects, with the greatest expression in patients with refractory asthma (P = .001). PCR and Western blotting analysis confirmed gene and protein expression of TRPV1 in cultured primary bronchial epithelial cells. Patch-clamp electrophysiology directly confirmed functional TRPV1 expression in all 3 groups. In functional assays the TRPV1 agonist capsaicin induced dose-dependent IL-8 release, which could be blocked by the antagonist capsazepine. Reduction of external pH from 7.4 to 6.4 activated a capsazepine-sensitive outwardly rectifying membrane current. CONCLUSIONS Functional TRPV1 channels are present in the human airway epithelium and overexpressed in the airways of patients with refractory asthma. These channels might represent a novel therapeutic target for the treatment of uncontrolled asthma.


Current Drug Targets - Inflammation & Allergy | 2007

Neurogenic inflammation and asthma

Claire A. Butler; Liam Heaney

Over the past number of decades there has been considerable interest in the role of neurogenic inflammation in asthma with the identification of many biologically active neuropeptides in the lung. Whilst there is convincing evidence of neurogenic inflammation in various animal models of asthma, the evidence in humans is less clear and replicating the experimental approaches in humans has proven difficult with different studies producing conflicting results. In terms of human studies, research has focused on whether pro-inflammatory neuropeptides are elevated in the asthmatic airway, and if so, what their functional effects are. There have also been studies to assess the efficacy of tachykinin receptor antagonists in improving indices of asthma control. Information to date would suggest that neuropeptides are present in human airways and are possibly upregulated in asthma, but this effect does not appear to be specific and may occur in other inflammatory airways conditions (chronic obstructive pulmonary disease (COPD) and smoking). At present there is insufficient evidence to suggest that tachykinin receptor antagonists confer any additional benefit over inhaled corticosteroid regimes for asthmatic patients.


Journal of Clinical Microbiology | 2013

Factors Influencing Acquisition of Burkholderia cepacia Complex Organisms in Patients with Cystic Fibrosis

Kay A. Ramsay; Claire A. Butler; Stuart Paynter; Robert S. Ware; Timothy J. Kidd; Claire Wainwright; Scott C. Bell

ABSTRACT Burkholderia cepacia complex organisms are important transmissible pathogens found in cystic fibrosis (CF) patients. In recent years, the rates of cross-infection of epidemic strains have declined due to effective infection control efforts. However, cases of sporadic B. cepacia complex infection continue to occur in some centers. The acquisition pathways and clinical outcomes of sporadic B. cepacia complex infection are unclear. We sought to determine the patient clinical characteristics, outcomes, incidence, and genotypic relatedness for all cases of B. cepacia complex infection at two CF centers. We also sought to study the external conditions that influence the acquisition of infection. From 2001 to 2011, 67 individual organisms were cultured from the respiratory samples of 64 patients. Sixty-five percent of the patients were adults, in whom chronic infections were more common (68%) (P = 0.006). The incidence of B. cepacia complex infection increased by a mean of 12% (95% confidence interval [CI], 3 to 23%) per year. The rates of transplantation and death were similar in the incident cases who developed chronic infection compared to those in patients with chronic Pseudomonas aeruginosa infection. Multilocus sequence typing revealed 50 individual strains from 65 isolates. Overall, 85% of the patients were infected with unique strains, suggesting sporadic acquisition of infection. The yearly incidence of nonepidemic B. cepacia complex infection was positively correlated with the amount of rainfall in the two sites examined: subtropical Brisbane (r = 0.65, P = 0.031) and tropical Townsville (r = 0.82, P = 0.002). This study demonstrates that despite strict cohort segregation, new cases of unrelated B. cepacia complex infection continue to occur. These data also support an environmental origin of infection and suggest that climate conditions may be associated with the acquisition of B. cepacia complex infections.


European Respiratory Journal | 2016

Reduced epithelial suppressor of cytokine signalling 1 in severe eosinophilic asthma.

Emma Doran; David F. Choy; Aarti Shikotra; Claire A. Butler; Declan O'Rourke; James A. Johnston; Adrien Kissenpfennig; Peter Bradding; Joseph R. Arron; Liam Heaney

Severe asthma represents a major unmet clinical need. Eosinophilic inflammation persists in the airways of many patients with uncontrolled asthma, despite high-dose inhaled corticosteroid therapy. Suppressors of cytokine signalling (SOCS) are a family of molecules involved in the regulation of cytokine signalling via inhibition of the Janus kinase–signal transducers and activators of transcription pathway. We examined SOCS expression in the airways of asthma patients and investigated whether this is associated with persistent eosinophilia. Healthy controls, mild/moderate asthmatics and severe asthmatics were studied. Whole genome expression profiling, quantitative PCR and immunohistochemical analysis were used to examine expression of SOCS1, SOCS2 and SOCS3 in bronchial biopsies. Bronchial epithelial cells were utilised to examine the role of SOCS1 in regulating interleukin (IL)-13 signalling in vitro. SOCS1 gene expression was significantly lower in the airways of severe asthmatics compared with mild/moderate asthmatics, and was inversely associated with airway eosinophilia and other measures of T-helper type 2 (Th2) inflammation. Immunohistochemistry demonstrated SOCS1 was predominantly localised to the bronchial epithelium. SOCS1 overexpression inhibited IL-13-mediated chemokine ligand (CCL) 26 (eotaxin-3) mRNA expression in bronchial epithelial cells. Severe asthma patients with persistent airway eosinophilia and Th2 inflammation have reduced airway epithelial SOCS1 expression. SOCS1 inhibits epithelial IL-13 signalling, supporting its key role in regulating Th2-driven eosinophilia in severe asthma. Persistent airway eosinophilia/Th2 inflammation in severe asthma is linked to reduced epithelial SOCS1 expression http://ow.ly/Mlgl3001UMU


Journal of Immunology | 2017

A CEACAM6-High Airway Neutrophil Phenotype and CEACAM6-High Epithelial Cells Are Features of Severe Asthma

Aarti Shikotra; David F. Choy; Salman Siddiqui; Greer Arthur; Deepti R. Nagarkar; Guiquan Jia; Adam K. A. Wright; Chandra M. Ohri; Emma Doran; Claire A. Butler; Beverley Hargadon; Alexander R. Abbas; Janet Jackman; Lawren C. Wu; Liam Heaney; Joseph R. Arron; Peter Bradding

Severe asthma represents a major unmet clinical need; understanding the pathophysiology is essential for the development of new therapies. Using microarray analysis, we previously found three immunological clusters in asthma: Th2-high, Th17-high, and Th2/17-low. Although new therapies are emerging for Th2-high disease, identifying molecular pathways in Th2-low disease remains an important goal. Further interrogation of our previously described microarray dataset revealed upregulation of gene expression for carcinoembryonic Ag cell adhesion molecule (CEACAM) family members in the bronchi of patients with severe asthma. Our aim was therefore to explore the distribution and cellular localization of CEACAM6 using immunohistochemistry on bronchial biopsy tissue obtained from patients with mild-to-severe asthma and healthy control subjects. Human bronchial epithelial cells were used to investigate cytokine and corticosteroid in vitro regulation of CEACAM6 gene expression. CEACAM6 protein expression in bronchial biopsies was increased in airway epithelial cells and lamina propria inflammatory cells in severe asthma compared with healthy control subjects. CEACAM6 in the lamina propria was localized to neutrophils predominantly. Neutrophil density in the bronchial mucosa was similar across health and the spectrum of asthma severity, but the percentage of neutrophils expressing CEACAM6 was significantly increased in severe asthma, suggesting the presence of an altered neutrophil phenotype. CEACAM6 gene expression in cultured epithelial cells was upregulated by wounding and neutrophil elastase. In summary, CEACAM6 expression is increased in severe asthma and primarily associated with airway epithelial cells and tissue neutrophils. CEACAM6 may contribute to the pathology of treatment-resistant asthma via neutrophil and airway epithelial cell–dependent pathways.


European Respiratory Journal | 2017

Tropical Australia is a potential reservoir of non-tuberculous mycobacteria in cystic fibrosis

L. Sherrard; George Tay; Claire A. Butler; Michelle E. Wood; Stephanie T. Yerkovich; Kay A. Ramsay; Dw Reid; Vanessa L. Moore; Timothy J. Kidd; Scott C. Bell

Improved survival rates and increased treatment intensity of people with cystic fibrosis have been accompanied by a rising incidence of multi-antibiotic resistant and difficult-to-treat respiratory pathogens, including non-tuberculous mycobacteria (NTM) [1]. NTM epidemiology in cystic fibrosis varies globally, with a prevalence of >20% in some geographical locations [2]. In particular, there are concerns that active NTM disease from rapidly growing mycobacteria (Mycobacterium abscessus complex) may be increasing and causing accelerated pulmonary decline [3, 4]. NTM are found naturally in ecological niches such as soil and water, and susceptible individuals may also acquire infection from potable water in their homes [5, 6]. Recent reports demonstrate person-to-person transmission [7, 8], which might occur via fomites and cough aerosols [8] and further emphasise the potential clinical importance of these organisms. Living in tropical Australia is associated with NTM acquisition, whilst long-term azithromycin is protective in CF http://ow.ly/FrJi309W8DK


Archive | 2012

Integrative Therapies for People with Cystic Fibrosis

Claire A. Butler; Scott C. Bell

Cystic fibrosis (CF) is the most common lethal autosomal inherited disorder affecting Caucasian populations. Due to improved treatments and multidisciplinary team care, the life expectancy of patients with CF has increased dramatically in the last 2 decades. Medical therapy for the majority of patients consists of regular sputum clearance, mucolytic therapy, antibiotics, pancreatic enzyme replacement, nutritional support, and anti-inflammatory agents such as azithromycin. Review by complementary and alternative medicine (CAM) therapists and the utilization of CAM medicines is common in people with CF and healthcare practitioners should encourage discussion with their patients about the use of such therapies. Data to date on the effectiveness of CAM therapy in CF are limited; therefore, adequately powered and carefully designed studies are required to enhance knowledge of the correct role of such therapies. Collaborations between academic centers established to evaluate CAM therapies with CF researchers would provide excellent opportunity to enhance the study of the role of CAM.

Collaboration


Dive into the Claire A. Butler's collaboration.

Top Co-Authors

Avatar

Liam Heaney

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emma Doran

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Lorcan McGarvey

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen McQuaid

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Scott C. Bell

QIMR Berghofer Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge