Claire Bardet
Paris Descartes University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claire Bardet.
Bone | 2012
S. Opsahl Vital; C. Gaucher; Claire Bardet; Peter S. N. Rowe; Anne George; Agnès Linglart; Catherine Chaussain
Several genetic disorders affecting bone mineralization may manifest during dentin mineralization. Dentin and bone are similar in several aspects, especially pertaining to the composition of the extracellular matrix (ECM) which is secreted by well-differentiated odontoblasts and osteoblasts, respectively. However, unlike bone, dentin is not remodelled and is not involved in the regulation of calcium and phosphate metabolism. In contrast to bone, teeth are accessible tissues with the shedding of deciduous teeth and the extractions of premolars and third molars for orthodontic treatment. The feasibility of obtaining dentin makes this a good model to study biomineralization in physiological and pathological conditions. In this review, we focus on two genetic diseases that disrupt both bone and dentin mineralization. Hypophosphatemic rickets is related to abnormal secretory proteins involved in the ECM organization of both bone and dentin, as well as in the calcium and phosphate metabolism. Osteogenesis imperfecta affects proteins involved in the local organization of the ECM. In addition, dentin examination permits evaluation of the effects of the systemic treatment prescribed to hypophosphatemic patients during growth. In conclusion, dentin constitutes a valuable tool for better understanding of the pathological processes affecting biomineralization.
PLOS ONE | 2013
Benjamin Salmon; Claire Bardet; Mayssam Khaddam; Jiar Naji; Benjamin R. Coyac; Brigitte Baroukh; Franck Letourneur; Julie Lesieur; Franck Decup; Dominique Le Denmat; Antonino Nicoletti; Anne Poliard; Peter S. N. Rowe; Eric Huet; Sibylle Opsahl Vital; Agnès Linglart; Marc D. McKee; Catherine Chaussain
Mutations in PHEX (phosphate-regulating gene with homologies to endopeptidases on the X-chromosome) cause X-linked familial hypophosphatemic rickets (XLH), a disorder having severe bone and tooth dentin mineralization defects. The absence of functional PHEX leads to abnormal accumulation of ASARM (acidic serine- and aspartate-rich motif) peptide − a substrate for PHEX and a strong inhibitor of mineralization − derived from MEPE (matrix extracellular phosphoglycoprotein) and other matrix proteins. MEPE-derived ASARM peptide accumulates in tooth dentin of XLH patients where it may impair dentinogenesis. Here, we investigated the effects of ASARM peptides in vitro and in vivo on odontoblast differentiation and matrix mineralization. Dental pulp stem cells from human exfoliated deciduous teeth (SHEDs) were seeded into a 3D collagen scaffold, and induced towards odontogenic differentiation. Cultures were treated with synthetic ASARM peptides (phosphorylated and nonphosphorylated) derived from the human MEPE sequence. Phosphorylated ASARM peptide inhibited SHED differentiation in vitro, with no mineralized nodule formation, decreased odontoblast marker expression, and upregulated MEPE expression. Phosphorylated ASARM peptide implanted in a rat molar pulp injury model impaired reparative dentin formation and mineralization, with increased MEPE immunohistochemical staining. In conclusion, using complementary models to study tooth dentin defects observed in XLH, we demonstrate that the MEPE-derived ASARM peptide inhibits both odontogenic differentiation and matrix mineralization, while increasing MEPE expression. These results contribute to a partial mechanistic explanation of XLH pathogenesis: direct inhibition of mineralization by ASARM peptide leads to the mineralization defects in XLH teeth. This process appears to be positively reinforced by the increased MEPE expression induced by ASARM. The MEPE-ASARM system can therefore be considered as a potential therapeutic target.
Journal of Bone and Mineral Research | 2015
Daniel J. Hunter; Claire Bardet; Sylvain Mouraret; Bo Liu; Gurpreet Singh; Jérémy Sadoine; Girija Dhamdhere; Andrew Smith; Xuan Vinh Tran; Adrienne Joy; Scott Rooker; Shigeki Suzuki; Annukka Vuorinen; Susanna Miettinen; Catherine Chaussain; Jill A. Helms
Wnt proteins are lipid‐modified, short‐range signals that control stem cell self‐renewal and tissue regeneration. We identified a population of Wnt responsive cells in the pulp cavity, characterized their function, and then created a pulp injury. The repair response was evaluated over time using molecular, cellular, and quantitative assays. We tested how healing was impacted by wound environments in which Wnt signaling was amplified. We found that a Wnt‐amplified environment was associated with superior pulp healing. Although cell death was still rampant, the number of cells undergoing apoptosis was significantly reduced. This resulted in significantly better survival of injured pulp cells, and resulted in the formation of more tertiary dentin. We engineered a liposome‐reconstituted form of WNT3A then tested whether this biomimetic compound could activate cells in the injured tooth pulp and stimulate dentin regeneration. Pulp cells responded to the elevated Wnt stimulus by differentiating into secretory odontoblasts. Thus, transiently amplifying the bodys natural Wnt response resulted in improved pulp vitality. These data have direct clinical implications for treating dental caries, the most prevalent disease affecting mankind.
Journal of Bone and Mineral Research | 2014
Won Hee Lim; Bo Liu; Du Cheng; Daniel J. Hunter; Zhendong Zhong; Daniel M. Ramos; Bart O. Williams; Paul T. Sharpe; Claire Bardet; Su-Jung Mah; Jill A. Helms
Odontoblasts, cementoblasts, ameloblasts, and osteoblasts all form mineralized tissues in the craniofacial complex, and all these cell types exhibit active Wnt signaling during postnatal life. We set out to understand the functions of this Wnt signaling, by evaluating the phenotypes of mice in which the essential Wnt chaperone protein, Wntless was eliminated. The deletion of Wls was restricted to cells expressing Osteocalcin (OCN), which in addition to osteoblasts includes odontoblasts, cementoblasts, and ameloblasts. Dentin, cementum, enamel, and bone all formed in OCN‐Cre;Wlsfl/fl mice but their homeostasis was dramatically affected. The most notable feature was a significant increase in dentin volume and density. We attribute this gain in dentin volume to a Wnt‐mediated misregulation of Runx2. Normally, Wnt signaling stimulates Runx2, which in turn inhibits dentin sialoprotein (DSP); this inhibition must be relieved for odontoblasts to differentiate. In OCN‐Cre;Wlsfl/fl mice, Wnt pathway activation is reduced and Runx2 levels decline. The Runx2‐mediated repression of DSP is relieved and odontoblast differentiation is accordingly enhanced. This study demonstrates the importance of Wnt signaling in the homeostasis of mineralized tissues of the craniofacial complex.
Journal of Bone and Mineral Research | 2016
Claire Bardet; Frédéric Courson; Yong Wu; Mayssam Khaddam; Benjamin Salmon; Sandy Ribes; Julia Thumfart; Paulo Marcio Yamaguti; Gaël Y. Rochefort; Marie-Lucile Figueres; Tilman Breiderhoff; Alejandro Garcia-Castaño; Benoît Vallée; Dominique Le Denmat; Brigitte Baroukh; Thomas Guilbert; Alain Schmitt; Jean-Marc Massé; Dominique Bazin; Georg Lorenz; Maria Morawietz; Jianghui Hou; Patricia Carvalho-Lobato; María Cristina Manzanares; Jean-Christophe Fricain; Deborah Talmud; Renato Demontis; Francisco de Assis Rocha Neves; Delphine Zenaty; Ariane Berdal
Claudin-16 protein (CLDN16) is a component of tight junctions (TJ) with a restrictive distribution so far demonstrated mainly in the kidney. Here, we demonstrate the expression of CLDN16 also in the tooth germ and show that claudin-16 gene (CLDN16) mutations result in amelogenesis imperfecta (AI) in the 5 studied patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC). To investigate the role of CLDN16 in tooth formation, we studied a murine model of FHHNC and showed that CLDN16 deficiency led to altered secretory ameloblast TJ structure, lowering of extracellular pH in the forming enamel matrix, and abnormal enamel matrix protein processing, resulting in an enamel phenotype closely resembling human AI. This study unravels an association of FHHNC owing to CLDN16 mutations with AI, which is directly related to the loss of function of CLDN16 during amelogenesis. Overall, this study indicates for the first time the importance of a TJ protein in tooth formation and underlines the need to establish a specific dental follow-up for these patients.
Journal of Medical Genetics | 2017
Paulo Marcio Yamaguti; Francisco de Assis Rocha Neves; Dominique Hotton; Claire Bardet; Muriel de La Dure-Molla; Luiz Claudio Castro; Maria do Carmo Scher; Maristela Estevão Barbosa; Christophe Ditsch; Jean-Christophe Fricain; Renaud de la Faille; Marie-Lucile Figueres; Rosa Vargas-Poussou; Pascal Houiller; Catherine Chaussain; Sylvie Babajko; Ariane Berdal; Ana Carolina Acevedo
Background Amelogenesis imperfecta (AI) is a group of genetic diseases characterised by tooth enamel defects. AI was recently described in patients with familial hypercalciuria and hypomagnesaemia with nephrocalcinosis (FHHNC) caused by CLDN16 mutations. In the kidney, claudin-16 interacts with claudin-19 to control the paracellular passage of calcium and magnesium. FHHNC can be linked to mutations in both genes. Claudin-16 was shown to be expressed during amelogenesis; however, no data are available on claudin-19. Moreover, the enamel phenotype of patients with CLDN19 mutations has never been described. In this study, we describe the clinical and genetic features of nine patients with FHHNC carrying CLDN19 mutations and the claudin-19 expression profile in rat ameloblasts. Methods Six FHHNC Brazilian patients were subjected to mutational analysis. Three additional French patients were recruited for orodental characterisation. The expression profile of claudin-19 was evaluated by RT-qPCR and immunofluorescence using enamel epithelium from rat incisors. Results All patients presented AI at different degrees of severity. Two new likely pathogenic variations in CLDN19 were found: p.Arg200Gln and p.Leu90Arg. RT-qPCR revealed low Cldn19 expression in ameloblasts. Confocal analysis indicated that claudin-19 was immunolocalised at the distal poles of secretory and maturing ameloblasts. Conclusions For the first time, it was demonstrated that AI is associated with FHHNC in patients carrying CLDN19 mutations. The data suggest claudin-19 as an additional determinant in enamel formation. Indeed, the coexistence of hypoplastic and hypomineralised AI in the patients was consistent with claudin-19 expression in both secretory and maturation stages. Additional indirect systemic effects cannot be excluded.
Connective Tissue Research | 2014
Benjamin Salmon; Claire Bardet; Benjamin R. Coyac; Brigitte Baroukh; J. Naji; Peter S. N. Rowe; S. Opsahl Vital; Agnès Linglart; Marc D. McKee; Catherine Chaussain
Abstract Mutations in phosphate-regulating gene (PHEX) lead to X-linked hypophosphatemic rickets (XLH), a genetic disease characterized by impaired mineralization in bones and teeth. In human XLH tooth dentin, calcospherites that would normally merge as part of the mineralization process are separated by unmineralized interglobular spaces where fragments of matrix proteins accumulate. Here, we immunolocalized osteopontin (OPN) in human XLH teeth, in a three-dimensional XLH human dental pulp stem cell-collagen scaffold culture model and in a rat tooth injury repair model treated with acidic serine- and aspartate-rich motif peptides (ASARM). In parallel, matrix extracellular phosphoglycoprotein (MEPE) immunolocalization and alkaline phosphatase (ALP) activity were assessed in XLH teeth. OPN was expressed by odontoblasts in the XLH models, and localized to the abnormal calcospherites of XLH tooth dentin. In addition, ALP activity and MEPE localization were abnormal in human XLH teeth, with MEPE showing an accumulation in the unmineralized interglobular spaces in dentin. Furthermore, XLH odontoblasts failed to form a well-polarized odontoblast layer. These data suggest that both MEPE and OPN are involved in impaired tooth mineralization associated with XLH, possibly through different effects on the mineralization process.
Bone | 2014
Sylvain Mouraret; Daniel J. Hunter; Claire Bardet; John B. Brunski; Philippe Bouchard; Jill A. Helms
Many of our assumptions concerning oral implant osseointegration are extrapolated from experimental models studying skeletal tissue repair in long bones. This disconnect between clinical practice and experimental research hampers our understanding of bone formation around oral implants and how this process can be improved. We postulated that oral implant osseointegration would be fundamentally equivalent to implant osseointegration elsewhere in the body. Mice underwent implant placement in the edentulous ridge anterior to the first molar and peri-implant tissues were evaluated at various timepoints after surgery. Our hypothesis was disproven; oral implant osseointegration is substantially different from osseointegration in long bones. For example, in the maxilla peri-implant pre-osteoblasts are derived from cranial neural crest whereas in the tibia peri-implant osteoblasts are derived from mesoderm. In the maxilla, new osteoid arises from periostea of the maxillary bone but in the tibia the new osteoid arises from the marrow space. Cellular and molecular analyses indicate that osteoblast activity and mineralization proceeds from the surfaces of the native bone and osteoclastic activity is responsible for extensive remodeling of the new peri-implant bone. In addition to histologic features of implant osseointegration, molecular and cellular assays conducted in a murine model provide new insights into the sequelae of implant placement and the process by which bone is generated around implants.
Journal of Clinical Periodontology | 2014
Sylvain Mouraret; Daniel J. Hunter; Claire Bardet; Antoine Popelut; John B. Brunski; Catherine Chaussain; Philippe Bouchard; Jill A. Helms
AIM To determine the key biological events occurring during implant failure and then we use this knowledge to develop new biology-based strategies that improve osseointegration. MATERIALS AND METHODS Wild-type and Axin2(LacZ/LacZ) adult male mice underwent oral implant placement, with and without primary stability. Peri-implant tissues were evaluated using histology, alkaline phosphatase (ALP) activity, tartrate resistant acid phosphatase (TRAP) activity and TUNEL staining. In addition, mineralization sites, collagenous matrix organization and the expression of bone markers in the peri-implant tissues were assessed. RESULTS Maxillary implants lacking primary stability show histological evidence of persistent fibrous encapsulation and mobility, which recapitulates the clinical problems of implant failure. Despite histological and molecular evidence of fibrous encapsulation, osteoblasts in the gap interface exhibit robust ALP activity. This mineralization activity is counteracted by osteoclast activity that resorbs any new bony matrix and consequently, the fibrous encapsulation remains. Using a genetic mouse model, we show that implants lacking primary stability undergo osseointegration, provided that Wnt signalling is amplified. CONCLUSIONS In a mouse model of oral implant failure caused by a lack of primary stability, we find evidence of active mineralization. This mineralization, however, is outpaced by robust bone resorption, which culminates in persistent fibrous encapsulation of the implant. Fibrous encapsulation can be prevented and osseointegration assured if Wnt signalling is elevated at the time of implant placement.
Journal of Dental Research | 2017
M. Biosse Duplan; Benjamin R. Coyac; Claire Bardet; C. Zadikian; A. Rothenbuhler; P. Kamenicky; K. Briot; Agnès Linglart; Catherine Chaussain
X-linked hypophosphatemia (XLH) is a rare genetic skeletal disease where increased phosphate wasting in the kidney leads to hypophosphatemia and prevents normal mineralization of bone and dentin. Here, we examined the periodontal status of 34 adults with XLH and separated them according to the treatment they received for hypophosphatemia. We observed that periodontitis frequency and severity were increased in adults with XLH and that the severity varied according to the hypophosphatemia treatment. Patients who benefited from an early and continuous vitamin D and phosphate supplementation during their childhood presented less periodontal attachment loss than patients with late or incomplete supplementation. Continued hypophosphatemia treatment during adulthood further improved the periodontal health. Extracted teeth from patients with late or incomplete supplementation showed a strong acellular cementum hypoplasia when compared with age-matched healthy controls. These results show that XLH disturbs not only bone and dentin formation but also cementum and that the constitutional defect of the attachment apparatus is associated with attachment loss.