Claire Basquin
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claire Basquin.
Molecular Cell | 2011
Sutapa Chakrabarti; Uma Jayachandran; Fabien Bonneau; Francesca Fiorini; Claire Basquin; S. Domcke; H. Le Hir; Elena Conti
Upf1 is a crucial factor in nonsense-mediated mRNA decay, the eukaryotic surveillance pathway that degrades mRNAs containing premature stop codons. The essential RNA-dependent ATPase activity of Upf1 is triggered by the formation of the surveillance complex with Upf2-Upf3. We report crystal structures of Upf1 in the presence and absence of the CH domain, captured in the transition state with ADP:AlF₄⁻ and RNA. In isolation, Upf1 clamps onto the RNA, enclosing it in a channel formed by both the catalytic and regulatory domains. Upon binding to Upf2, the regulatory CH domain of Upf1 undergoes a large conformational change, causing the catalytic helicase domain to bind RNA less extensively and triggering its helicase activity. Formation of the surveillance complex thus modifies the RNA binding properties and the catalytic activity of Upf1, causing it to switch from an RNA-clamping mode to an RNA-unwinding mode.
Nature Structural & Molecular Biology | 2009
H. von Moeller; Claire Basquin; Elena Conti
The DEAD-box protein DBP5 is essential for mRNA export in both yeast and humans. It binds RNA and is concentrated and locally activated at the cytoplasmic side of the nuclear pore complex. We have determined the crystal structures of human DBP5 bound to RNA and AMPPNP, and bound to the cytoplasmic nucleoporin NUP214. The structures reveal that binding of DBP5 to nucleic acid and to NUP214 is mutually exclusive. Using in vitro assays, we demonstrate that NUP214 decreases both the RNA binding and ATPase activities of DBP5. The interactions are mediated by conserved residues, implying a conserved recognition mechanism. These results suggest a framework for the consecutive steps leading to the release of mRNA at the final stages of nuclear export. More generally, they provide a paradigm for how binding of regulators can specifically inhibit DEAD-box proteins.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Gretel Buchwald; Judith Ebert; Claire Basquin; Jérôme Saulière; Uma Jayachandran; Fulvia Bono; H. Le Hir; Elena Conti
In mammals, Up-frameshift proteins (UPFs) form a surveillance complex that interacts with the exon junction complex (EJC) to elicit nonsense-mediated mRNA decay (NMD). UPF3b is the component of the surveillance complex that bridges the interaction with the EJC. Here, we report the 3.4 Å resolution crystal structure of a minimal UPF3b-EJC assembly, consisting of the interacting domains of five proteins (UPF3b, MAGO, Y14, eIF4AIII, and Barentsz) together with RNA and adenylyl-imidodiphosphate. Human UPF3b binds with the C-terminal domain stretched over a composite surface formed by eIF4AIII, MAGO, and Y14. Residues that affect NMD when mutated are found at the core interacting surfaces, whereas differences between UPF3b and UPF3a map at peripheral interacting residues. Comparison with the binding mode of the protein PYM underscores how a common molecular surface of MAGO and Y14 recognizes different proteins acting at different times in the same pathway. The binding mode to eIF4AIII identifies a surface hot spot that is used by different DEAD-box proteins to recruit their regulators.
The EMBO Journal | 2011
Sagar Bhogaraju; Michael Taschner; Michaela Morawetz; Claire Basquin; Esben Lorentzen
The cilium is an important organelle that is found on many eukaryotic cells, where it serves essential functions in motility, sensory reception and signalling. Intraflagellar transport (IFT) is a vital process for the formation and maintenance of cilia. We have determined the crystal structure of Chlamydomonas reinhardtii IFT25/27, an IFT sub‐complex, at 2.6 Å resolution. IFT25 and IFT27 interact via a conserved interface that we verify biochemically using structure‐guided mutagenesis. IFT27 displays the fold of Rab‐like small guanosine triphosphate hydrolases (GTPases), binds GTP and GDP with micromolar affinity and has very low intrinsic GTPase activity, suggesting that it likely requires a GTPase‐activating protein (GAP) for robust GTP turnover. A patch of conserved surface residues contributed by both IFT25 and IFT27 is found adjacent to the GTP‐binding site and could mediate the binding to other IFT proteins as well as to a potential GAP. These results provide the first step towards a high‐resolution structural understanding of the IFT complex.
Nature | 2015
Debora L. Makino; Benjamin Schuch; Elisabeth Stegmann; Marc Baumgärtner; Claire Basquin; Elena Conti
The eukaryotic exosome is a conserved RNA-degrading complex that functions in RNA surveillance, turnover and processing. How the same machinery can either completely degrade or precisely trim RNA substrates has long remained unexplained. Here we report the crystal structures of a yeast nuclear exosome containing the 9-subunit core, the 3′–5′ RNases Rrp44 and Rrp6, and the obligate Rrp6-binding partner Rrp47 in complex with different RNAs. The combined structural and biochemical data of this 12-subunit complex reveal how a single-stranded RNA can reach the Rrp44 or Rrp6 active sites directly or can bind Rrp6 and be threaded via the central channel towards the distal RNase Rrp44. When a bulky RNA is stalled at the entrance of the channel, Rrp6–Rrp47 swings open. The results suggest how the same molecular machine can coordinate processive degradation and partial trimming in an RNA-dependent manner by a concerted swinging mechanism of the two RNase subunits.
Structure | 2011
A. Arockia Jeyaprakash; Claire Basquin; Uma Jayachandran; Elena Conti
Localization of the chromosomal passenger complex (CPC) at centromeres during early mitosis is essential for accurate chromosome segregation and is dependent on the phosphorylation of histone H3. We report the 2.7 Å resolution structure of the CPC subunit Survivin bound to the N-terminal tail of histone H3 carrying the Thr3 phosphorylation mark (Thr3ph). The BIR domain of Survivin recognizes the Ala1-Arg2-Thr3ph-Lys4 sequence, decoding the modification state and the free N terminus of histone H3 by a strategy similar to that used by PHD fingers. The structural analysis permitted the identification of putative Survivin-binding epitopes in other mitotic proteins, including human Shugoshin 1. Using biophysical and structural data, we show that a phospho-mimic N-terminal sequence such as that of hSgo1 (Ala1-Lys2-Glu3-Arg4) contains the specificity determinants to bind Survivin. Our findings suggest that the CPC engages in mutually exclusive interactions with other constituents of the mitotic machinery and a histone mark in chromatin.
The EMBO Journal | 2014
Benjamin Schuch; Monika Feigenbutz; Debora L. Makino; Sebastian Falk; Claire Basquin; Phil Mitchell; Elena Conti
The exosome is a conserved multi‐subunit ribonuclease complex that functions in 3′ end processing, turnover and surveillance of nuclear and cytoplasmic RNAs. In the yeast nucleus, the 10‐subunit core complex of the exosome (Exo‐10) physically and functionally interacts with the Rrp6 exoribonuclease and its associated cofactor Rrp47, the helicase Mtr4 and Mpp6. Here, we show that binding of Mtr4 to Exo‐10 in vitro is dependent upon both Rrp6 and Rrp47, whereas Mpp6 binds directly and independently of other cofactors. Crystallographic analyses reveal that the N‐terminal domains of Rrp6 and Rrp47 form a highly intertwined structural unit. Rrp6 and Rrp47 synergize to create a composite and conserved surface groove that binds the N‐terminus of Mtr4. Mutation of conserved residues within Rrp6 and Mtr4 at the structural interface disrupts their interaction and inhibits growth of strains expressing a C‐terminal GFP fusion of Mtr4. These studies provide detailed structural insight into the interaction between the Rrp6–Rrp47 complex and Mtr4, revealing an important link between Mtr4 and the core exosome.
The EMBO Journal | 2013
Dennis Kappei; Falk Butter; Christian Benda; Marion Scheibe; Irena Draskovic; Michelle Stevense; Clara Lopes Novo; Claire Basquin; Masatake Araki; Kimi Araki; Dragomir B. Krastev; Ralf Kittler; Rolf Jessberger; J. Arturo Londoño-Vallejo; Matthias Mann; Frank Buchholz
Telomeres are repetitive DNA structures that, together with the shelterin and the CST complex, protect the ends of chromosomes. Telomere shortening is mitigated in stem and cancer cells through the de novo addition of telomeric repeats by telomerase. Telomere elongation requires the delivery of the telomerase complex to telomeres through a not yet fully understood mechanism. Factors promoting telomerase–telomere interaction are expected to directly bind telomeres and physically interact with the telomerase complex. In search for such a factor we carried out a SILAC‐based DNA–protein interaction screen and identified HMBOX1, hereafter referred to as homeobox telomere‐binding protein 1 (HOT1). HOT1 directly and specifically binds double‐stranded telomere repeats, with the in vivo association correlating with binding to actively processed telomeres. Depletion and overexpression experiments classify HOT1 as a positive regulator of telomere length. Furthermore, immunoprecipitation and cell fractionation analyses show that HOT1 associates with the active telomerase complex and promotes chromatin association of telomerase. Collectively, these findings suggest that HOT1 supports telomerase‐dependent telomere elongation.
Nucleic Acids Research | 2013
Humayun Sharif; Sevim Ozgur; Kundan Sharma; Claire Basquin; Henning Urlaub; Elena Conti
Translational repression and deadenylation of eukaryotic mRNAs result either in the sequestration of the transcripts in a nontranslatable pool or in their degradation. Removal of the 5′ cap structure is a crucial step that commits deadenylated mRNAs to 5′-to-3′ degradation. Pat1, Edc3 and the DEAD-box protein Dhh1 are evolutionary conserved factors known to participate in both translational repression and decapping, but their interplay is currently unclear. We report the 2.8 Å resolution structure of yeast Dhh1 bound to the N-terminal domain of Pat1. The structure shows how Pat1 wraps around the C-terminal RecA domain of Dhh1, docking onto the Phe-Asp-Phe (FDF) binding site. The FDF-binding site of Dhh1 also recognizes Edc3, revealing why the binding of Pat1 and Edc3 on Dhh1 are mutually exclusive events. Using co-immunoprecipitation assays and structure-based mutants, we demonstrate that the mode of Dhh1-Pat1 recognition is conserved in humans. Pat1 and Edc3 also interfere and compete with the RNA-binding properties of Dhh1. Mapping the RNA-binding sites on Dhh1 with a crosslinking–mass spectrometry approach shows a large RNA-binding surface around the C-terminal RecA domain, including the FDF-binding pocket. The results suggest a model for how Dhh1-containing messenger ribonucleoprotein particles might be remodeled upon Pat1 and Edc3 binding.
Nature Structural & Molecular Biology | 2012
A. G. Murachelli; Judith Ebert; Claire Basquin; H. Le Hir; Elena Conti
The ASAP complex interacts with the exon-junction complex (EJC), a messenger ribonucleoprotein complex involved in post-transcriptional regulation. The three ASAP subunits (Acinus, RNPS1 and SAP18) have been individually implicated in transcriptional regulation, pre-mRNA splicing and mRNA quality control. To shed light on the basis for and consequences of ASAPs interaction with the EJC, we have determined the 1.9-Å resolution structure of a eukaryotic ASAP core complex. The RNA-recognition motif of RNPS1 binds to a conserved motif of Acinus with a recognition mode similar to that observed in splicing U2AF proteins. The Acinus–RNPS1 platform recruits the ubiquitin-like domain of SAP18, forming a ternary complex that has both RNA- and protein-binding properties. Unexpectedly, our structural analysis identified an Acinus-like motif in Pinin, another EJC-associated splicing factor. We show that Pinin physically interacts with RNPS1 and SAP18, forming an alternative ternary complex, PSAP.