Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire Bellis is active.

Publication


Featured researches published by Claire Bellis.


Forensic Science International | 2003

A molecular genetic approach for forensic animal species identification

Claire Bellis; Kevin J. Ashton; L. Freney; B. Blair; Lyn R. Griffiths

This study investigated potential markers within chromosomal, mitochondrial DNA (mtDNA) and ribosomal RNA (rRNA) with the aim of developing a DNA based method to allow differentiation between animal species. Such discrimination tests may have important applications in the forensic science, agriculture, quarantine and customs fields. DNA samples from five different animal individuals within the same species for 10 species of animal (including human) were analysed. DNA extraction and quantitation followed by PCR amplification and GeneScan visualisation formed the basis of the experimental analysis. Five gene markers from three different types of genes were investigated. These included genomic markers for the beta-actin and TP53 tumor suppressor gene. Mitochondrial DNA markers, designed by Bataille et al. [Forensic Sci. Int. 99 (1999) 165], examined the Cytochrome b gene and Hypervariable Displacement Loop (D-Loop) region. Finally, a ribosomal RNA marker for the 28S rRNA gene optimised by Naito et al. [J. Forensic Sci. 37 (1992) 396] was used as a possible marker for speciation. Results showed a difference of only several base pairs between all species for the beta-actin and 28S markers, with the exception of Sus scrofa (pig) beta-actin fragment length, which produced a significantly smaller fragment. Multiplexing of Cytochrome b and D-Loop markers gave limited species information, although positive discrimination of human DNA was evident. The most specific and discriminatory results were shown using the TP53 gene since this marker produced greatest fragment size differences between animal species studied. Sample differentiation for all species was possible following TP53 amplification, suggesting that this gene could be used as a potential animal species identifier.


BMC Evolutionary Biology | 2011

Large scale mitochondrial sequencing in Mexican Americans suggests a reappraisal of Native American origins

Satish Kumar; Claire Bellis; Mark Zlojutro; Phillip E. Melton; John Blangero; Joanne E. Curran

BackgroundThe Asian origin of Native Americans is largely accepted. However uncertainties persist regarding the source population(s) within Asia, the divergence and arrival time(s) of the founder groups, the number of expansion events, and migration routes into the New World. mtDNA data, presented over the past two decades, have been used to suggest a single-migration model for which the Beringian land mass plays an important role.ResultsIn our analysis of 568 mitochondrial genomes, the coalescent age estimates of shared roots between Native American and Siberian-Asian lineages, calculated using two different mutation rates, are A4 (27.5 ± 6.8 kya/22.7 ± 7.4 kya), C1 (21.4 ± 2.7 kya/16.4 ± 1.5 kya), C4 (21.0 ± 4.6 kya/20.0 ± 6.4 kya), and D4e1 (24.1 ± 9.0 kya/17.9 ± 10.0 kya). The coalescent age estimates of pan-American haplogroups calculated using the same two mutation rates (A2:19.5 ± 1.3 kya/16.1 ± 1.5 kya, B2:20.8 ± 2.0 kya/18.1 ± 2.4 kya, C1:21.4 ± 2.7 kya/16.4 ± 1.5 kya and D1:17.2 ± 2.0 kya/14.9 ± 2.2 kya) and estimates of population expansions within America (~21-16 kya), support the pre-Clovis occupation of the New World. The phylogeography of sublineages within American haplogroups A2, B2, D1 and the C1b, C1c andC1d subhaplogroups of C1 are complex and largely specific to geographical North, Central and South America. However some sub-branches (B2b, C1b, C1c, C1d and D1f) already existed in American founder haplogroups before expansion into the America.ConclusionsOur results suggest that Native American founders diverged from their Siberian-Asian progenitors sometime during the last glacial maximum (LGM) and expanded into America soon after the LGM peak (~20-16 kya). The phylogeography of haplogroup C1 suggest that this American founder haplogroup differentiated in Siberia-Asia. The situation is less clear for haplogroup B2, however haplogroups A2 and D1 may have differentiated soon after the Native American founders divergence. A moderate population bottle neck in American founder populations just before the expansion most plausibly resulted in few founder types in America. The similar estimates of the diversity indices and Bayesian skyline analysis in North America, Central America and South America suggest almost simultaneous (~ 2.0 ky from South to North America) colonization of these geographical regions with rapid population expansion differentiating into more or less regional branches across the pan-American haplogroups.


Neurogenetics | 2005

A genome-wide scan provides evidence for loci influencing a severe heritable form of common migraine

Rodney Arthur Lea; Dale R. Nyholt; Rob Curtain; Micky Ovcaric; Rachel Sciascia; Claire Bellis; John MacMillan; Sharon Anne Quinlan; R. A. Gibson; Linda C. McCarthy; John H. Riley; Y. J. Smithies; S. Kinrade; Lyn R. Griffiths

Migraine is a prevalent neurovascular disease with a significant genetic component. Linkage studies have so far identified migraine susceptibility loci on chromosomes 1, 4, 6, 11, 14, 19 and X. We performed a genome-wide scan of 92 Australian pedigrees phenotyped for migraine with and without aura and for a more heritable form of “severe” migraine. Multipoint non-parametric linkage analysis revealed suggestive linkage on chromosome 18p11 for the severe migraine phenotype (LOD*=2.32, P=0.0006) and chromosome 3q (LOD*=2.28, P=0.0006). Excess allele sharing was also observed at multiple different chromosomal regions, some of which overlap with, or are directly adjacent to, previously implicated migraine susceptibility regions. We have provided evidence for two loci involved in severe migraine susceptibility and conclude that dissection of the “migraine” phenotype may be helpful for identifying susceptibility genes that influence the more heritable clinical (symptom) profiles in affected pedigrees. Also, we concluded that the genetic aetiology of the common (International Headache Society) forms of the disease is probably comprised of a number of low to moderate effect susceptibility genes, perhaps acting synergistically, and this effect is not easily detected by traditional single-locus linkage analyses of large samples of affected pedigrees.


Molecular Psychiatry | 2015

Novel loci associated with usual sleep duration: The CHARGE Consortium Genome-Wide Association Study

Daniel J. Gottlieb; Karin Hek; Ting Hsu Chen; Nathaniel F. Watson; G. Eiriksdottir; Enda M. Byrne; Marilyn C. Cornelis; Simon C. Warby; S. Bandinelli; Lynn Cherkas; Daniel S. Evans; H. J. Grabe; Jari Lahti; Man Li; Terho Lehtimäki; Thomas Lumley; Kristin D. Marciante; Louis Pérusse; Bruce M. Psaty; John Robbins; Greg Tranah; Jacqueline M. Vink; Jemma B. Wilk; Jeanette M. Stafford; Claire Bellis; Reiner Biffar; Claude Bouchard; Brian E. Cade; Gary C. Curhan; Johan G. Eriksson

Usual sleep duration is a heritable trait correlated with psychiatric morbidity, cardiometabolic disease and mortality, although little is known about the genetic variants influencing this trait. A genome-wide association study (GWAS) of usual sleep duration was conducted using 18 population-based cohorts totaling 47 180 individuals of European ancestry. Genome-wide significant association was identified at two loci. The strongest is located on chromosome 2, in an intergenic region 35- to 80-kb upstream from the thyroid-specific transcription factor PAX8 (lowest P=1.1 × 10−9). This finding was replicated in an African-American sample of 4771 individuals (lowest P=9.3 × 10−4). The strongest combined association was at rs1823125 (P=1.5 × 10−10, minor allele frequency 0.26 in the discovery sample, 0.12 in the replication sample), with each copy of the minor allele associated with a sleep duration 3.1 min longer per night. The alleles associated with longer sleep duration were associated in previous GWAS with a more favorable metabolic profile and a lower risk of attention deficit hyperactivity disorder. Understanding the mechanisms underlying these associations may help elucidate biological mechanisms influencing sleep duration and its association with psychiatric, metabolic and cardiovascular disease.


Human Heredity | 2005

Phenotypical Characterisation of the Isolated Norfolk Island Population Focusing on Epidemiological Indicators of Cardiovascular Disease

Claire Bellis; Roger Hughes; Kimberly Nina Begley; Sharon Anne Quinlan; Rodney Arthur Lea; Simon Heath; John Blangero; Lyn R. Griffiths

Objectives: Only 193 people from Pitcairn Island, all descended from 9 ‘Bounty’ mutineers and 12 Tahitian women, moved to the uninhabited Norfolk Island in 1856. Our objective was to assess the population of Norfolk Island, several thousand km off the eastern coast of Australia, as a genetic isolate of potential use for cardiovascular disease (CVD) gene mapping. Methods: A total of 602 participants, approximately two thirds of the island’s present adult population, were characterized for a panel of CVD risk factors. Statistical power and heritability were calculated. Results: Norfolk Islander’s possess an increased prevalence of hypertension, obesity and multiple CVD risk factors when compared to outbred Caucasian populations. 64% of the study participants were descendents of the island’s original founder population. Triglycerides, cholesterol, and blood pressures all had heritabilities above 0.2. Conclusions: The Norfolk Island population is a potentially useful genetic isolate for gene mapping studies aimed at identifying CVD risk factor quantitative trait loci (QTL).


Hypertension | 2013

Plasma Lipidomic Profile Signature of Hypertension in Mexican American Families Specific Role of Diacylglycerols

Hemant Kulkarni; Peter J. Meikle; Manju Mamtani; Jacquelyn M. Weir; Christopher K. Barlow; Jeremy B. M. Jowett; Claire Bellis; Thomas D. Dyer; Matthew P. Johnson; David L. Rainwater; Laura Almasy; Michael C. Mahaney; Anthony G. Comuzzie; John Blangero; Joanne E. Curran

Both as a component of metabolic syndrome and as an independent entity, hypertension poses a continued challenge with regard to its diagnosis, pathogenesis, and treatment. Previous studies have documented connections between hypertension and indicators of lipid metabolism. Novel technologies, such as plasma lipidomic profiling, promise a better understanding of disorders in which there is a derangement of the lipid metabolism. However, association of plasma lipidomic profiles with hypertension in a high-risk population, such as Mexican Americans, has not been evaluated before. Using the rich data and sample resource from the ongoing San Antonio Family Heart Study, we conducted plasma lipidomic profiling by combining high-performance liquid chromatography with tandem mass spectroscopy to characterize 319 lipid species in 1192 individuals from 42 large and extended Mexican American families. Robust statistical analyses using polygenic regression models, liability threshold models, and bivariate trait analyses implemented in the SOLAR software were conducted after accounting for obesity, insulin resistance, and relative abundance of various lipoprotein fractions. Diacylglycerols, in general, and the DG 16:0/22:5 and DG 16:0/22:6 lipid species, in particular, were significantly associated with systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP), as well as liability of incident hypertension measured during 7140.17 person-years of follow-up. Four lipid species, including the DG 16:0/22:5 and DG 16:0/22:6 species, showed significant genetic correlations with the liability of hypertension in bivariate trait analyses. Our results demonstrate the value of plasma lipidomic profiling in the context of hypertension and identify disturbance of diacylglycerol metabolism as an independent biomarker of hypertension.


WOS | 2015

Novel loci associated with usual sleep duration: the CHARGE Consortium Genome-Wide Association Study

Daniel J. Gottlieb; Karin Hek; T-h Chen; Nathaniel F. Watson; G. Eiriksdottir; Enda M. Byrne; Marilyn C. Cornelis; Simon C. Warby; S. Bandinelli; Lynn Cherkas; Daniel S. Evans; H. J. Grabe; Jari Lahti; Mushan Li; Terho Lehtimäki; Thomas Lumley; Kristin D. Marciante; Pérusse L; Bruce M. Psaty; John A. Robbins; Greg Tranah; Jacqueline M. Vink; Jemma B. Wilk; Jeanette M. Stafford; Claire Bellis; Reiner Biffar; Claude Bouchard; Brian E. Cade; Gary C. Curhan; Johan G. Eriksson

Usual sleep duration is a heritable trait correlated with psychiatric morbidity, cardiometabolic disease and mortality, although little is known about the genetic variants influencing this trait. A genome-wide association study (GWAS) of usual sleep duration was conducted using 18 population-based cohorts totaling 47 180 individuals of European ancestry. Genome-wide significant association was identified at two loci. The strongest is located on chromosome 2, in an intergenic region 35- to 80-kb upstream from the thyroid-specific transcription factor PAX8 (lowest P=1.1 × 10−9). This finding was replicated in an African-American sample of 4771 individuals (lowest P=9.3 × 10−4). The strongest combined association was at rs1823125 (P=1.5 × 10−10, minor allele frequency 0.26 in the discovery sample, 0.12 in the replication sample), with each copy of the minor allele associated with a sleep duration 3.1 min longer per night. The alleles associated with longer sleep duration were associated in previous GWAS with a more favorable metabolic profile and a lower risk of attention deficit hyperactivity disorder. Understanding the mechanisms underlying these associations may help elucidate biological mechanisms influencing sleep duration and its association with psychiatric, metabolic and cardiovascular disease.


PLOS ONE | 2012

An X Chromosome Association Scan of the Norfolk Island Genetic Isolate Provides Evidence for a Novel Migraine Susceptibility Locus at Xq12

Bridget H. Maher; Rodney Arthur Lea; Miles C. Benton; Hannah Cox; Claire Bellis; Melanie A. Carless; Thomas D. Dyer; Joanne E. Curran; Jac Charlesworth; Julie E. Buring; Tobias Kurth; Daniel I. Chasman; Paul M. Ridker; Markus Schürks; John Blangero; Lyn R. Griffiths

Migraine is a common and debilitating neurovascular disorder with a complex envirogenomic aetiology. Numerous studies have demonstrated a preponderance of women affected with migraine and previous pedigree linkage studies in our laboratory have identified susceptibility loci on chromosome Xq24-Xq28. In this study we have used the genetic isolate of Norfolk Island to further analyse the X chromosome for migraine susceptibility loci. An association approach was employed to analyse 14,124 SNPs spanning the entire X chromosome. Genotype data from 288 individuals comprising a large core-pedigree, of which 76 were affected with migraine, were analysed. Although no SNP reached chromosome-wide significance (empirical α = 1×10−5) ranking by P-value revealed two primary clusters of SNPs in the top 25. A 10 SNP cluster represents a novel migraine susceptibility locus at Xq12 whilst a 11 SNP cluster represents a previously identified migraine susceptibility locus at Xq27. The strongest association at Xq12 was seen for rs599958 (OR = 1.75, P = 8.92×10−4), whilst at Xq27 the strongest association was for rs6525667 (OR = 1.53, P = 1.65×10−4). Further analysis of SNPs at these loci was performed in 5,122 migraineurs from the Women’s Genome Health Study and provided additional evidence for association at the novel Xq12 locus (P<0.05). Overall, this study provides evidence for a novel migraine susceptibility locus on Xq12. The strongest effect SNP (rs102834, joint P = 1.63×10−5) is located within the 5′UTR of the HEPH gene, which is involved in iron homeostasis in the brain and may represent a novel pathway for involvement in migraine pathogenesis.


Human Heredity | 2013

The positive association of obesity variants with adulthood adiposity strengthens over an 80-year period: A gene-by-birth year interaction

Ellen W. Demerath; Audrey C. Choh; William Johnson; Joanne E. Curran; Miryoung Lee; Claire Bellis; Thomas D. Dyer; Stefan A. Czerwinski; John Blangero; Bradford Towne

Objective: To test the hypothesis that the statistical effect of obesity-related genetic variants on adulthood adiposity traits depends on birth year. Methods: The study sample included 907 related, non-Hispanic White participants in the Fels Longitudinal Study, born between 1901 and 1986, and aged 25-64.99 years (474 females; 433 males) at the time of measurement. All had both genotype data from which a genetic risk score (GRS) composed of 32 well-replicated obesity-related common single nucleotide polymorphisms was created, and phenotype data [including body mass index (BMI), waist circumference, and the sum of four subcutaneous skinfolds]. Maximum likelihood-based variance components analysis was used to estimate trait heritabilities, main effects of GRS and birth year, GRS-by-birth year interaction, sex, and age. Results: Positive GRS-by-birth year interaction effects were found for BMI (p < 0.001), waist circumference (p = 0.007), and skinfold thickness (p < 0.007). For example, each one-allele increase in GRS was estimated to result in a 0.16 increase in BMI among males born in 1930 compared to a 0.47 increase among those born in 1970. Conclusions: These novel findings suggest the influence of common obesity susceptibility variants has increased during the obesity epidemic.


Heredity | 2008

Linkage disequilibrium analysis in the genetically isolated Norfolk Island population

Claire Bellis; Hannah Cox; Micky Ovcaric; Kimberly Nina Begley; Rodney Arthur Lea; Sharon Anne Quinlan; David Burgner; Simon Heath; John Blangero; Lyn R. Griffiths

Norfolk Island is a human genetic isolate, possessing unique population characteristics that could be utilized for complex disease gene localization. Our intention was to evaluate the extent and strength of linkage disequilibrium (LD) in the Norfolk isolate by investigating markers within Xq13.3 and the NOS2A gene encoding the inducible nitric oxide synthase. A total of six microsatellite markers spanning ∼11 Mb were assessed on chromosome Xq13.3 in a group of 56 men from Norfolk Island. Additionally, three single nucleotide polymorphisms (SNPs) localizing to the NOS2A gene were analyzed in a subset of the complex Norfolk pedigree. With the exception of two of the marker pairs, one of which is the most distantly spaced marker, all the Xq13.3 marker pairs were found to be in significant LD indicating that LD extends up to 9.5–11.5 Mb in the Norfolk Island population. Also, all SNPs studied showed significant LD in both Norfolk Islanders and Australian Caucasians, with two of the marker pairs in complete LD in the Norfolk population only. The Norfolk Island study population possesses a unique set of characteristics including founder effect, geographical isolation, exhaustive genealogical information and phenotypic data of use to cardiovascular disease risk traits. With LD extending up to 9.5–11 Mb, the Norfolk isolate should be a powerful resource for the localization of complex disease genes.

Collaboration


Dive into the Claire Bellis's collaboration.

Top Co-Authors

Avatar

John Blangero

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Lyn R. Griffiths

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Thomas D. Dyer

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Joanne E. Curran

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rod A. Lea

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Rodney Arthur Lea

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melanie A. Carless

Texas Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge