Claire C. Morgan
Dublin City University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claire C. Morgan.
Cell | 2014
Shiping Liu; Eline D. Lorenzen; Matteo Fumagalli; Bo Li; Kelley Harris; Zijun Xiong; Long Zhou; Thorfinn Sand Korneliussen; Courtney C. Babbitt; Greg Wray; Jianwen Li; Weiming He; Zhuo Wang; Wenjing Fu; Xueyan Xiang; Claire C. Morgan; Aoife Doherty; Mary J. O’Connell; James O. McInerney; Erik W. Born; Love Dalén; Rune Dietz; Ludovic Orlando; Christian Sonne; Guojie Zhang; Rasmus Nielsen; Jun Wang
Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyper-lipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and show that the species diverged only 479-343 thousand years BP. We find that genes on the polar bear lineage have been under stronger positive selection than in brown bears; nine of the top 16 genes under strong positive selection are associated with cardiomyopathy and vascular disease, implying important reorganization of the cardiovascular system. One of the genes showing the strongest evidence of selection, APOB, encodes the primary lipoprotein component of low-density lipoprotein (LDL); functional mutations in APOB may explain how polar bears are able to cope with life-long elevated LDL levels that are associated with high risk of heart disease in humans.
Molecular Biology and Evolution | 2013
Claire C. Morgan; Peter G. Foster; Andrew E. Webb; Davide Pisani; James O. McInerney; Mary J. O'Connell
Heterogeneity among life traits in mammals has resulted in considerable phylogenetic conflict, particularly concerning the position of the placental root. Layered upon this are gene- and lineage-specific variation in amino acid substitution rates and compositional biases. Life trait variations that may impact upon mutational rates are longevity, metabolic rate, body size, and germ line generation time. Over the past 12 years, three main conflicting hypotheses have emerged for the placement of the placental root. These hypotheses place the Atlantogenata (common ancestor of Xenarthra plus Afrotheria), the Afrotheria, or the Xenarthra as the sister group to all other placental mammals. Model adequacy is critical for accurate tree reconstruction and by failing to account for these compositional and character exchange heterogeneities across the tree and data set, previous studies have not provided a strongly supported hypothesis for the placental root. For the first time, models that accommodate both tree and data set heterogeneity have been applied to mammal data. Here, we show the impact of accurate model assignment and the importance of data sets in accommodating model parameters while maintaining the power to reject competing hypotheses. Through these sophisticated methods, we demonstrate the importance of model adequacy, data set power and provide strong support for the Atlantogenata over other competing hypotheses for the position of the placental root.
BMC Evolutionary Biology | 2010
Claire C. Morgan; Noeleen B. Loughran; Thomas A. Walsh; Alan Harrison; Mary J. O'Connell
BackgroundReproductive proteins are central to the continuation of all mammalian species. The evolution of these proteins has been greatly influenced by environmental pressures induced by pathogens, rival sperm, sexual selection and sexual conflict. Positive selection has been demonstrated in many of these proteins with particular focus on primate lineages. However, the mammalia are a diverse group in terms of mating habits, population sizes and germ line generation times. We have examined the selective pressures at work on a number of novel reproductive proteins across a wide variety of mammalia.ResultsWe show that selective pressures on reproductive proteins are highly varied. Of the 10 genes analyzed in detail, all contain signatures of positive selection either across specific sites or in specific lineages or a combination of both. Our analysis of SP56 and Col1a1 are entirely novel and the results show positively selected sites present in each gene. Our findings for the Col1a1 gene are suggestive of a link between positive selection and severe disease type. We find evidence in our dataset to suggest that interacting proteins are evolving in symphony: most likely to maintain interacting functionality.ConclusionOur in silico analyses show positively selected sites are occurring near catalytically important regions suggesting selective pressure to maximize efficient fertilization. In those cases where a mechanism of protein function is not fully understood, the sites presented here represent ideal candidates for mutational study. This work has highlighted the widespread rate heterogeneity in mutational rates across the mammalia and specifically has shown that the evolution of reproductive proteins is highly varied depending on the species and interacting partners. We have shown that positive selection and disease are closely linked in the Col1a1 gene.
BMC Evolutionary Biology | 2012
Claire C. Morgan; Kabita Shakya; Andrew E. Webb; Thomas A. Walsh; Mark Lynch; Christine E. Loscher; Heather J. Ruskin; Mary J. O’Connell
BackgroundCancer, much like most human disease, is routinely studied by utilizing model organisms. Of these model organisms, mice are often dominant. However, our assumptions of functional equivalence fail to consider the opportunity for divergence conferred by ~180 Million Years (MY) of independent evolution between these species. For a given set of human disease related genes, it is therefore important to determine if functional equivalency has been retained between species. In this study we test the hypothesis that cancer associated genes have different patterns of substitution akin to adaptive evolution in different mammal lineages.ResultsOur analysis of the current literature and colon cancer databases identified 22 genes exhibiting colon cancer associated germline mutations. We identified orthologs for these 22 genes across a set of high coverage (>6X) vertebrate genomes. Analysis of these orthologous datasets revealed significant levels of positive selection. Evidence of lineage-specific positive selection was identified in 14 genes in both ancestral and extant lineages. Lineage-specific positive selection was detected in the ancestral Euarchontoglires and Hominidae lineages for STK11, in the ancestral primate lineage for CDH1, in the ancestral Murinae lineage for both SDHC and MSH6 genes and the ancestral Muridae lineage for TSC1.ConclusionIdentifying positive selection in the Primate, Hominidae, Muridae and Murinae lineages suggests an ancestral functional shift in these genes between the rodent and primate lineages. Analyses such as this, combining evolutionary theory and predictions - along with medically relevant data, can thus provide us with important clues for modeling human diseases.
Cell Reports | 2017
P Arthur-Farraj; Claire C. Morgan; Martyna Adamowicz; Jose A. Gomez-Sanchez; Shaline V. Fazal; Anthony Beucher; Bonnie Razzaghi; Rhona Mirsky; Kristjan R. Jessen; Timothy J. Aitman
Summary Repair Schwann cells play a critical role in orchestrating nerve repair after injury, but the cellular and molecular processes that generate them are poorly understood. Here, we perform a combined whole-genome, coding and non-coding RNA and CpG methylation study following nerve injury. We show that genes involved in the epithelial-mesenchymal transition are enriched in repair cells, and we identify several long non-coding RNAs in Schwann cells. We demonstrate that the AP-1 transcription factor C-JUN regulates the expression of certain micro RNAs in repair Schwann cells, in particular miR-21 and miR-34. Surprisingly, unlike during development, changes in CpG methylation are limited in injury, restricted to specific locations, such as enhancer regions of Schwann cell-specific genes (e.g., Nedd4l), and close to local enrichment of AP-1 motifs. These genetic and epigenomic changes broaden our mechanistic understanding of the formation of repair Schwann cell during peripheral nervous system tissue repair.
Molecular Biology and Evolution | 2015
Andrew E. Webb; Z. Nevin Gerek; Claire C. Morgan; Thomas A. Walsh; Christine E. Loscher; Scott V. Edwards; Mary J. O’Connell
It has been proposed that positive selection may be associated with protein functional change. For example, human and macaque have different outcomes to HIV infection and it has been shown that residues under positive selection in the macaque TRIM5α receptor locate to the region known to influence species-specific response to HIV. In general, however, the relationship between sequence and function has proven difficult to fully elucidate, and it is the role of large-scale studies to help bridge this gap in our understanding by revealing major patterns in the data that correlate genotype with function or phenotype. In this study, we investigate the level of species-specific positive selection in innate immune genes from human and mouse. In total, we analyzed 456 innate immune genes using codon-based models of evolution, comparing human, mouse, and 19 other vertebrate species to identify putative species-specific positive selection. Then we used population genomic data from the recently completed Neanderthal genome project, the 1000 human genomes project, and the 17 laboratory mouse genomes project to determine whether the residues that were putatively positively selected are fixed or variable in these populations. We find evidence of species-specific positive selection on both the human and the mouse branches and we show that the classes of genes under positive selection cluster by function and by interaction. Data from this study provide us with targets to test the relationship between positive selection and protein function and ultimately to test the relationship between positive selection and discordant phenotypes.
BMC Evolutionary Biology | 2013
Claire C. Morgan; Ann M Mc Cartney; Mark Ta Donoghue; Noeleen B. Loughran; Charles Spillane; Emma C. Teeling; Mary J. O’Connell
BackgroundPlacental mammals display a huge range of life history traits, including size, longevity, metabolic rate and germ line generation time. Although a number of general trends have been proposed between these traits, there are exceptions that warrant further investigation. Species such as naked mole rat, human and certain bat species all exhibit extreme longevity with respect to body size. It has long been established that telomeres and telomere maintenance have a clear role in ageing but it has not yet been established whether there is evidence for adaptation in telomere maintenance proteins that could account for increased longevity in these species.ResultsHere we carry out a molecular investigation of selective pressure variation, specifically focusing on telomere associated genes across placental mammals. In general we observe a large number of instances of positive selection acting on telomere genes. Although these signatures of selection overall are not significantly correlated with either longevity or body size we do identify positive selection in the microbat species Myotis lucifugus in functionally important regions of the telomere maintenance genes DKC1 and TERT, and in naked mole rat in the DNA repair gene BRCA1.ConclusionThese results demonstrate the multifarious selective pressures acting across the mammal phylogeny driving lineage-specific adaptations of telomere associated genes. Our results show that regardless of the longevity of a species, these proteins have evolved under positive selection thereby removing increased longevity as the single selective force driving this rapid rate of evolution. However, evidence of molecular adaptations specific to naked mole rat and Myotis lucifugus highlight functionally significant regions in genes that may alter the way in which telomeres are regulated and maintained in these longer-lived species.
Mammalian Genome | 2014
Claire C. Morgan; Christopher J. Creevey; Mary J. O’Connell
Mitochondrial data have traditionally been used in reconstructing a variety of species phylogenies. The low rates of recombination and thorough characterization of mitochondrial data across vertebrate species make it a particularly attractive phylogenetic marker. The relatively low number of fully sequenced mammal genomes and the lack of extensive sampling within Superorders have posed a serious problem for reaching agreement on the placement mammal species. The use of mitochondrial data sequences from large numbers of mammals could serve to circumvent the taxon-sampling deficit. Here we assess the suitability of mitochondrial data as a phylogenetic marker in mammal phylogenetics. MtDNA datasets of mammal origin have been filtered as follows: (i) we have sampled sparsely across the phylogenetic tree, (ii) we have constrained our sampling to genes with high taxon coverage, (iii) we have categorised rates across sites in a phylogeny independent manner and have removed fast evolving sites, and (iv), we have sampled from very shallow divergence times to reduce phylogenetic conflict. However, topologies obtained using these filters are not consistent with previous studies and are discordant across different genes. Individual mitochondrial genes, and indeed all mitochondrial genes analysed as a supermatrix, resulted in poor resolution of the species phylogeny. Overall, our study highlights the limitations of mitochondrial data, not only for resolving deep divergences and but also for shallow divergences in the mammal phylogeny.
Computation | 2015
Raymond J. Moran; Claire C. Morgan; Mary J. O'Connell
There are numerous phylogenetic reconstruction methods and models available—but which should you use and why? Important considerations in phylogenetic analyses include data quality, structure, signal, alignment length and sampling. If poorly modelled, variation in rates of change across proteins and across lineages can lead to incorrect phylogeny reconstruction which can then lead to downstream misinterpretation of the underlying data. The risk of choosing and applying an inappropriate model can be reduced with some critical yet straightforward steps outlined in this paper. We use the question of the position of the root of placental mammals as our working example to illustrate the topological impact of model misspecification. Using this case study we focus on using models in a Bayesian framework and we outline the steps involved in identifying and assessing better fitting models for specific datasets.
Circulation-cardiovascular Genetics | 2018
Martyna Adamowicz; Claire C. Morgan; Bernhard J. Haubner; Michela Noseda; Melissa J. Collins; Marta Abreu Paiva; Prashant K. Srivastava; Pascal Gellert; Bonnie Razzaghi; Peter O’Gara; Priyanka Raina; Leonardo Bottolo; Michael D. Schneider; Sian E. Harding; Josef M. Penninger; Timothy J. Aitman
Background: The adult mammalian heart has little regenerative capacity after myocardial infarction (MI), whereas neonatal mouse heart regenerates without scarring or dysfunction. However, the underlying pathways are poorly defined. We sought to derive insights into the pathways regulating neonatal development of the mouse heart and cardiac regeneration post-MI. Methods and Results: Total RNA-seq of mouse heart through the first 10 days of postnatal life (referred to as P3, P5, P10) revealed a previously unobserved transition in microRNA (miRNA) expression between P3 and P5 associated specifically with altered expression of protein-coding genes on the focal adhesion pathway and cessation of cardiomyocyte cell division. We found profound changes in the coding and noncoding transcriptome after neonatal MI, with evidence of essentially complete healing by P10. Over two-thirds of each of the messenger RNAs, long noncoding RNAs, and miRNAs that were differentially expressed in the post-MI heart were differentially expressed during normal postnatal development, suggesting a common regulatory pathway for normal cardiac development and post-MI cardiac regeneration. We selected exemplars of miRNAs implicated in our data set as regulators of cardiomyocyte proliferation. Several of these showed evidence of a functional influence on mouse cardiomyocyte cell division. In addition, a subset of these miRNAs, miR-144-3p, miR-195a-5p, miR-451a, and miR-6240 showed evidence of functional conservation in human cardiomyocytes. Conclusions: The sets of messenger RNAs, miRNAs, and long noncoding RNAs that we report here merit further investigation as gatekeepers of cell division in the postnatal heart and as targets for extension of the period of cardiac regeneration beyond the neonatal period.