Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire Durmort is active.

Publication


Featured researches published by Claire Durmort.


Journal of Molecular Biology | 2008

AdcAII, a new pneumococcal Zn-binding protein homologous with ABC transporters: biochemical and structural analysis.

Elodie Loisel; Lilian Jacquamet; Laurence Serre; Cédric Bauvois; Jean Luc Ferrer; Thierry Vernet; Anne Marie Di Guilmi; Claire Durmort

Regulation of metal homeostasis is vital for pathogenic bacteria facing drastic metal concentration changes in various locations within the host during invasion. Metal-binding receptors (MBRs), one of the extracellular components of ATP-binding cassette transporters, have been shown to be essential in this process. Streptococcus pneumoniae expresses two characterized MBRs: PsaA and AdcA, two extracellular lipoproteins encoded by the psaABCD and adcRCBA operons, respectively. The Mn- and Zn-uptake functions of PsaA and AdcA, respectively, have been well established. Here we describe AdcAII as a third putative S. pneumoniae MBR. The analysis of a phylogenetic tree built from the sequence alignment of 68 proteins reveals a subgroup of members displaying an unusual genetic operon organisation. The adcAII gene belongs to a 6670-nucleotide-long transcript spanning the spr0903 to spr0907 loci encoding for the CcdA, thioredoxine, YfnA, AdcAII and PhtD proteins. Two adjacent repeats of imperfect AdcR-binding consensus sequence were identified upstream of the adcAII gene, suggesting a transcriptional co-regulation of adcAII and phtD genes. Biophysical and structural studies of recombinant AdcAII were performed to identify the metal specificity of the protein. Using electrospray mass spectrometry in native conditions, we found that Zn was bound to recombinant AdcAII. Screening of the effect of 10 cationic ions on the thermal stability of AdcAII revealed that Zn had the most pronounced stabilizing effect. The crystal structure of AdcAII has been solved to 2.4 A resolution. One Zn ion is bound to each AdcAII molecule in a symmetrical active site composed of three His and one Glu. The structure almost perfectly superimposed on the known MBR structures. The presence of a flexible 15-residue-long loop close to the metal-binding site is specific to those specialized in Zn transport. Taken together, these functional and structural data provide new perspectives related to the physiological role of AdcAII in pneumococcus Zn homeostasis.


Infection and Immunity | 2008

The Interaction of Streptococcus pneumoniae with Plasmin Mediates Transmigration across Endothelial and Epithelial Monolayers by Intercellular Junction Cleavage

Cécile Attali; Claire Durmort; Thierry Vernet; Anne Marie Di Guilmi

ABSTRACT The precise mechanisms by which Streptococcus pneumoniae overcomes epithelial and endothelial barriers to access underlying human tissues remain to be determined. The plasminogen system is highly important for the tissue barrier degradation which allows cell migration. Plasminogen is known to interact with pneumococci via enolase, glyceraldehyde-3-phosphate dehydrogenase, and choline-binding protein E. These observations prompted us to evaluate the role of this proteolytic system in the pneumococcal invasion process. We observed that coating of S. pneumoniae R6 strain with plasminogen or inactivated plasmin increased adherence to pulmonary epithelial A549 and vascular endothelial EaHy cells in vitro. This indicates that plasminogen-mediated adherence is independent of the protease activity and involves plasminogen binding to receptors on eukaryotic cell surfaces. Conversely, decreased adherence of bacterial cells coated with active plasmin was observed, indicating that the protease activity limits bacterial attachment on the cell surface. We were then interested in investigating the role of the proteolytic plasmin activity in the traversal of tissue barriers. We observed that adherence of plasmin-coated D39 (encapsulated) or R6 (unencapsulated) pneumococci induced sporadic disruptions of EaHy and A549 monolayer cell junctions. This was not observed when plasmin was inhibited by aprotinin. Endothelial junction disorganization may proceed by proteolysis of the cell junction components. This is supported by our observation of the in vitro cleavage by plasmin bound to pneumococci of recombinant vascular endothelial cadherin, the main component of endothelial adherens junctions. Finally, junction damage induced by plasmin may be related to tissue barrier traversal, as we measured an increase of S. pneumoniae transmigration across epithelial A549 and endothelial EaHy layers when active plasmin was present on the bacterial surface. Our results highlight a novel function for the plasminogen recruitment at the bacterial surface in facilitating adherence of pneumococci to endothelial and epithelial cells, while active plasmin degrades intercellular junctions. This process promotes migration of pneumococci through cell barriers by a pericellular route, a prerequisite for dissemination of S. pneumoniae in the host organism.


Molecular Microbiology | 2011

Zinc uptake by Streptococcus pneumoniae depends on both AdcA and AdcAII and is essential for normal bacterial morphology and virulence

Lucie Bayle; Suneeta Chimalapati; Guy Schoehn; Jeremy S. Brown; Thierry Vernet; Claire Durmort

Zinc is an essential trace metal for living cells. The ABC transporter AdcABC was previously shown to be required for zinc uptake by Streptococcus pneumoniae. As we have recently described AdcAII as another zinc‐binding lipoprotein, we have investigated the role of both AdcA and AdcAII in S. pneumoniae zinc metabolism. Deletion of either adcA or adcAII but not phtD reduced S. pneumoniae zinc uptake, with dual mutation of both adcA and adcAII further decreasing zinc import. For the Δ(adcA/adcAII) mutant, growth and intracellular concentrations of zinc were both greatly reduced in low zinc concentration. When grown in zinc‐deficient medium, the Δ(adcA/adcAII) mutant displayed morphological defects related to aberrant septation. Growth and morphology of the Δ(adcA/adcAII) mutant recovered after supplementation with zinc. Dual deletion of adcA and adcAII strongly impaired growth of the pneumococcus in bronchoalveolar lavage fluid and human serum, and prevented S. pneumoniae establishing infection in mouse models of nasopharyngeal colonization, pneumonia and sepsis without altering the capsule. Taken together, our results show that AdcA and AdcAII play an essential and redundant role in specifically importing zinc into the pneumococcus, and that both zinc transporters are required for proper cell division and for S. pneumoniae survival during infection.


Molecular and Cellular Biology | 2010

The Motor Protein Myosin-X Transports VE-Cadherin along Filopodia To Allow the Formation of Early Endothelial Cell-Cell Contacts

Sébastien Almagro; Claire Durmort; Adeline Chervin-Pétinot; Stéphanie Heyraud; Mathilde Dubois; Olivier Lambert; Camille Maillefaud; Elizabeth A. Hewat; Jean Patrick Schaal; Philippe Huber; Danielle Gulino-Debrac

ABSTRACT Vascular endothelium (VE), the monolayer of endothelial cells that lines the vascular tree, undergoes damage at the basis of some vascular diseases. Its integrity is maintained by VE-cadherin, an adhesive receptor localized at cell-cell junctions. Here, we show that VE-cadherin is also located at the tip and along filopodia in sparse or subconfluent endothelial cells. We observed that VE-cadherin navigates along intrafilopodial actin filaments. We found that the actin motor protein myosin-X is colocalized and moves synchronously with filopodial VE-cadherin. Immunoprecipitation and pulldown assays confirmed that myosin-X is directly associated with the VE-cadherin complex. Furthermore, expression of a dominant-negative mutant of myosin-X revealed that myosin-X is required for VE-cadherin export to cell edges and filopodia. These features indicate that myosin-X establishes a link between the actin cytoskeleton and VE-cadherin, thereby allowing VE-cadherin transportation along intrafilopodial actin cables. In conclusion, we propose that VE-cadherin trafficking along filopodia using myosin-X motor protein is a prerequisite for cell-cell junction formation. This mechanism may have functional consequences for endothelium repair in pathological settings.


Infection and Immunity | 2008

Streptococcus pneumoniae Choline-Binding Protein E Interaction with Plasminogen/Plasmin Stimulates Migration across the Extracellular Matrix

Cécile Attali; Cecile Frolet; Claire Durmort; Julien Offant; Thierry Vernet; Anne Marie Di Guilmi

ABSTRACT The virulence mechanisms leading Streptococcus pneumoniae to convert from nasopharyngeal colonization to a tissue-invasive phenotype are still largely unknown. Proliferation of infection requires penetration of the extracellular matrix, which occurs by recruitment of host proteases to the bacterial cell surface. We present evidence supporting the role of choline-binding protein E (CBPE) (a member of the surface-exposed choline-binding protein family) as an important receptor for human plasminogen, the precursor of plasmin. The results of ligand overlay blot analyses, solid-phase binding assays, and surface plasmon resonance experiments support the idea of an interaction between CBPE and plasminogen. We have shown that the phosphorylcholine esterase (Pce) domain of CBPE interacts with the plasminogen kringle domains. Analysis of the crystal structure of the Pce domain, followed by site-directed mutagenesis, allowed the identification of the plasminogen-binding region composed in part by lysine residues, some of which map in a linear fashion on the surface of the Pce domain. The biological relevance of the CBPE-plasminogen interaction is supported by the fact that, compared to the wild-type strain, a mutant of pneumococcus with the cbpE gene deleted (i) displays a reduced level of plasminogen binding and plasmin activation and (ii) shows reduced ability to cross the extracellular matrix in an in vitro model. These results support the idea of a physiological role for the CBPE-plasminogen interaction in pneumococcal dissemination into human tissue.


Biochemistry | 2011

Biochemical Characterization of the Histidine Triad Protein PhtD as a Cell Surface Zinc-Binding Protein of Pneumococcus

Elodie Loisel; Suneeta Chimalapati; Catherine Bougault; Anne Imberty; Benoit Gallet; Anne Marie Di Guilmi; Jeremy S. Brown; Thierry Vernet; Claire Durmort

Zinc homeostasis is critical for pathogen host colonization. Indeed, during invasion, Streptococcus pneumoniae has to finely regulate zinc transport to cope with a wide range of Zn(2+) concentrations within the various host niches. AdcAII was identified as a pneumococcal Zn(2+)-binding protein; its gene is present in an operon together with the phtD gene. PhtD belongs to the histidine triad protein family, but to date, its function has not been clarified. Using several complementary biochemical methods, we provide evidence that like AdcAII, PhtD is a metal-binding protein specific for zinc. When Zn(2+) binds (K(d) = 131 ± 10 nM), the protein displays substantial thermal stabilization. We also present the first direct evidence of a joint function of AdcAII and PhtD by demonstrating that their expression is corepressed by Zn(2+), that they interact directly in vitro, and that they are colocalized at the bacterial surface. These results suggest the common involvement of the AdcAII-PhtD system in pneumococcal zinc homeostasis.


Biochemistry | 2012

PatA and PatB Form a Functional Heterodimeric ABC Multidrug Efflux Transporter Responsible for the Resistance of Streptococcus pneumoniae to Fluoroquinolones

Emilie Boncoeur; Claire Durmort; Benoît Bernay; Christine Ebel; Anne Marie Di Guilmi; Jacques Croizé; Thierry Vernet; Jean-Michel Jault

All bacterial multidrug ABC transporters have been shown to work as either homodimers or heterodimers. Two possibly linked genes, patA and patB from Streptococcus pneumococcus, that encode half-ABC transporters have been shown previously to be involved in fluoroquinolone resistance. We showed that the ΔpatA, ΔpatB, or ΔpatA/ΔpatB mutant strains were more sensitive to unstructurally related compounds, i.e., ethidium bromide or fluoroquinolones, than the wild-type R6 strain. Inside-out vesicles prepared from Escherichia coli expressing PatA and/or PatB transported Hoechst 33342, a classical substrate of multidrug transporters, only when both PatA and PatB were coexpressed. This transport was inhibited either by orthovanadate or by reserpine, and mutation of the conserved Walker A lysine residue of either PatA or PatB fully abrogated Hoechst 33342 transport. PatA, PatB, and the PatA/PatB heterodimer were purified from detergent-solubilized E. coli membrane preparations. Protein dimers were identified in all cases, albeit in different proportions. In contrast to the PatA/PatB heterodimers, homodimers of PatA or PatB failed to show a vanadate-sensitive ATPase activity. Thus, PatA and PatB need to interact together to make a functional drug efflux transporter, and they work only as heterodimers.


Molecular and Cellular Biology | 2008

Contribution of Annexin 2 to the Architecture of Mature Endothelial Adherens Junctions

Stéphanie Heyraud; Michel Jaquinod; Claire Durmort; Emilie Dambroise; Evelyne Concord; Jean Patrick Schaal; Philippe Huber; Danielle Gulino-Debrac

ABSTRACT The vascular endothelial cadherin (VE-cad)-based complex is involved in the maintenance of vascular endothelium integrity. Using immunoprecipitation experiments, we have demonstrated that, in confluent human umbilical vein endothelial cells, the VE-cad-based complex interacts with annexin 2 and that annexin 2 translocates from the cytoplasm to the cell-cell contact sites as cell confluence is established. Annexin 2, located in cholesterol rafts, binds to both the actin cytoskeleton and the VE-cad-based complex so the complex is docked to cholesterol rafts. These multiple connections prevent the lateral diffusion of the VE-cad-based complex, thus strengthening adherens junctions in the ultimate steps of maturation. Moreover, we observed that the down-regulation of annexin 2 by small interfering RNA induces a delocalization of VE-cad from adherens junctions and consequently a destabilization of these junctions. Furthermore, our data indicate that the decoupling of the annexin 2/p11 complex from the VE-cad-based junction, triggered by vascular endothelial growth factor treatment, facilitates the switch from a quiescent to an immature state.


Infection and Immunity | 2011

Infection with Conditionally Virulent Streptococcus pneumoniae Δpab Strains Induces Antibody to Conserved Protein Antigens but Does Not Protect against Systemic Infection with Heterologous Strains

Suneeta Chimalapati; Jonathan Cohen; Emilie Camberlein; Claire Durmort; Helen Baxendale; Corné P. de Vogel; Alex van Belkum; Jeremy S. Brown

ABSTRACT Avirulent strains of a bacterial pathogen could be useful tools for investigating immunological responses to infection and potentially effective vaccines. We have therefore constructed an auxotrophic TIGR4 Δpab strain of Streptococcus pneumoniae by deleting the pabB gene Sp_0665. The TIGR4 Δpab strain grew well in complete medium but was unable to grow in serum unless it was supplemented with para-aminobenzoic acid (PABA). The TIGR4 Δpab strain was markedly attenuated in virulence in mouse models of S. pneumoniae nasopharyngeal colonization, pneumonia, and sepsis. Supplementing mouse drinking water with PABA largely restored the virulence of TIGR4 Δpab. An additional Δpab strain constructed in the D39 capsular serotype 2 background was also avirulent in a sepsis model. Systemic inoculation of mice with TIGR4 Δpab induced antibody responses to S. pneumoniae protein antigens, including PpmA, PsaA, pneumolysin, and CbpD, but not capsular polysaccharide. Flow cytometry demonstrated that IgG in sera from TIGR4 Δpab-vaccinated mice bound to the surface of TIGR4 and D39 bacteria but not to a capsular serotype 3 strain, strain 0100993. Mice vaccinated with the TIGR4 Δpab or D39 Δpab strain by intraperitoneal inoculation were protected from developing septicemia when challenged with the homologous S. pneumoniae strain. Vaccination with the TIGR4 Δpab strain provided only weak or no protection against heterologous challenge with the D39 or 0100993 strain but did strongly protect against a TIGR4 capsular-switch strain expressing a serotype 2 capsule. The failure of cross-protection after systemic vaccination with Δpab bacteria suggests that parenteral administration of a live attenuated vaccine is not an attractive approach for preventing S. pneumoniae infection.


Biochemical Society Transactions | 2008

Structure of artificial and natural VE-cadherin-based adherens junctions.

Jean-Christophe Taveau; Mathilde Dubois; Olivier Le Bihan; Sylvain Trépout; Sébastien Almagro; Elizabeth A. Hewat; Claire Durmort; Stéphanie Heyraud; Danielle Gulino-Debrac; Olivier Lambert

In vascular endothelium, adherens junctions between endothelial cells are composed of VE-cadherin (vascular endothelial cadherin), an adhesive receptor that is crucial for the proper assembly of vascular structures and the maintenance of vascular integrity. As a classical cadherin, VE-cadherin links endothelial cells together by homophilic interactions mediated by its extracellular part and associates intracellularly with the actin cytoskeleton via catenins. Although, from structural crystallographic data, a dimeric structure arranged in a trans orientation has emerged as a potential mechanism of cell-cell adhesion, the cadherin organization within adherens junctions remains controversial. Concerning VE-cadherin, its extracellular part possesses the capacity to self-associate in solution as hexamers consisting of three antiparallel cadherin dimers. VE-cadherin-based adherens junctions were reconstituted in vitro by assembly of a VE-cadherin EC (extracellular repeat) 1-EC4 hexamer at the surfaces of liposomes. The artificial adherens junctions revealed by cryoelectron microscopy appear as a two-dimensional self-assembly of hexameric structures. This cadherin organization is reminiscent of that found in native desmosomal junctions. Further structural studies performed on native VE-cadherin junctions would provide a better understanding of the cadherin organization within adherens junctions. Homophilic interactions between cadherins are strengthened intracellularly by connection to the actin cytoskeleton. Recently, we have discovered that annexin 2, an actin-binding protein connects the VE-cadherin-catenin complex to the actin cytoskeleton. This novel link is labile and promotes the endothelial cell switch from a quiescent to an angiogenic state.

Collaboration


Dive into the Claire Durmort's collaboration.

Top Co-Authors

Avatar

Thierry Vernet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Anne Marie Di Guilmi

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jeremy S. Brown

University College London

View shared research outputs
Top Co-Authors

Avatar

Elizabeth A. Hewat

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Julie Bonnet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Benoit Gallet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. M. Di Guilmi

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Catherine Bougault

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Christine Moriscot

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge