Claire E. Henry
University of New South Wales
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claire E. Henry.
Gynecologic Oncology | 2014
Caroline E. Ford; G. Punnia-Moorthy; Claire E. Henry; Estelle Llamosas; Sheri Nixdorf; Jake Olivier; Rosmarie Caduff; Robyn L. Ward; Viola Heinzelmann-Schwarz
OBJECTIVE Aberrant Wnt signalling has previously been associated with gynaecological cancers, and the aim of this study was to investigate the expression of Wnt5a in epithelial ovarian cancer, and clarify its role in activating or inhibiting β-catenin dependent and independent Wnt signalling pathways. METHOD Wnt5a expression was investigated in a large cohort of epithelial ovarian cancer patient samples using immunohistochemistry and correlated with clinicopathological variables. Wnt5a function was investigated in vitro in ovarian cell lines. RESULTS Wnt5a expression was found to be upregulated in all major subtypes (serous, endometrioid, clear cell and mucinous) of epithelial ovarian cancer compared to borderline tumours and benign controls. Treatment of ovarian surface epithelial cells with recombinant Wnt5a decreased cell adhesion and was associated with increased epithelial to mesenchymal transition (EMT). In addition, downstream targets of β-catenin dependent Wnt signalling were inhibited, and β-catenin independent targets increased following Wnt5a upregulation. Knockdown of Wnt5a in ovarian cancer cells was associated with a mesenchymal to epithelial transition (MET), but had no significant effect on cell migration or proliferation. CONCLUSION This study adds to the increasing evidence that Wnt signalling may play an important role in ovarian cancer development. Utilising an unparalleled large cohort of 623 patients, Wnt5a protein expression was shown to be significantly higher in ovarian cancer patients when compared to benign and borderline ovarian tumours and healthy control patients. In addition, we have utilised in vitro models to show for the first time in ovarian cancer that Wnt5a driven non-canonical pathways can alter epithelial to mesenchymal transition (EMT).
Oncotarget | 2015
Claire E. Henry; Estelle Llamosas; Alexandra Knipprath-Meszaros; Andreas Schoetzau; Ellen C. Obermann; Maya Fuenfschilling; Rosemarie Caduff; Daniel Fink; Neville F. Hacker; Robyn L. Ward; Viola Heinzelmann-Schwarz; Caroline E. Ford
AIM In recent years, the Wnt signalling pathway has been implicated in epithelial ovarian cancer and its members have potential as diagnostic, prognostic and therapeutic targets. Here we investigated the role of two Wnt receptor tyrosine kinases (RTKs), ROR1 and ROR2, and their putative ligand, Wnt5a, in ovarian cancer. METHODS Immunohistochemistry for ROR2 was performed in a large patient cohort, including benign controls, borderline tumours and epithelial ovarian cancer. In addition, siRNA was used to silence ROR1, ROR2 and Wnt5a individually, and together, in two ovarian cancer cell lines, and the effects on cell proliferation, adhesion, migration and invasion were measured. RESULTS ROR2 expression is significantly increased in ovarian cancer patients compared to patients with benign disease. In vitro assays showed that silencing either receptor inhibits ovarian cancer cell migration and invasion, and concurrently silencing both receptors has an even stronger inhibitory effect on proliferation, migration and invasion. CONCLUSIONS ROR2 expression is increased in epithelial ovarian cancer, and silencing ROR2 and its sister receptor ROR1 has a strong inhibitory effect on the ability of ovarian cancer cells to proliferate, migrate and invade through an extracellular matrix.
Oncogenesis | 2016
Claire E. Henry; Estelle Llamosas; A. Djordjevic; Neville F. Hacker; Caroline E. Ford
Ovarian cancer survival remains poor despite recent advances in our understanding of genetic profiles. Unfortunately, the majority of ovarian cancer patients have recurrent disease after chemotherapy and lack other treatment options. Wnt signalling has been extensively implicated in cancer progression and chemoresistance. Therefore, we investigated the previously described Wnt receptors ROR1 and ROR2 as regulators of epithelial-to-mesenchymal transition (EMT) in a clinically relevant cell line model. The parental A2780- and cisplatin-resistant A2780-cis cell lines were used as a model of ovarian cancer chemoresistance. Proliferation, adhesion, migration and invasion were measured after transient overexpression of ROR1 and ROR2 in the parental A2780 cell line, and silencing of ROR1 and ROR2 in the A2780-cis cell line. Here we show that ROR1 and ROR2 expression is increased in A2780-cis cells, alongside β-catenin-independent Wnt targets. Knockdown of ROR1 and ROR2 significantly inhibited cell migration and invasion and simultaneous knockdown of ROR1 and ROR2 significantly sensitised cells to cisplatin, whilereas ROR overexpression in the parental cell line increased cell invasion. Therefore, ROR1 and ROR2 have the potential as novel drug targets in metastatic and recurrent ovarian cancer patients.
Gynecologic Oncology | 2016
Caroline E. Ford; Claire E. Henry; Estelle Llamosas; A. Djordjevic; Neville F. Hacker
The three major gynaecological cancers, ovarian, uterine and cervical, contribute a significant burden to global cancer mortality, and affect women in both developed and developing countries. However, unlike other cancer types that have seen rapid advances and incorporation of targeted treatments in recent years, personalised medicine is not yet a reality in the treatment of gynaecological cancers. Advances in sequencing technology and international collaborations and initiatives such as The Cancer Genome Atlas are now revealing the molecular basis of these cancers, and highlighting key signalling pathways involved. One pathway which plays a role in all three cancer types, is the Wnt signalling pathway. This complex developmental pathway is altered in most human malignancies, and members of this pathway, particularly the recently linked ROR receptor tyrosine kinases may be attractive future therapeutic targets. This review provides an up-to-date summary of research into Wnt signalling and ovarian, uterine and cervical cancers, and discusses the potential of the Wnt pathway as a future target for personalised medicine in gynaecological cancers.
Virchows Archiv | 2017
Sean S. Q. Ma; Claire E. Henry; Estelle Llamosas; Rupert Higgins; Benjamin Daniels; Luke B. Hesson; Nicholas J. Hawkins; Robyn L. Ward; Caroline E. Ford
The Wnt signalling receptor receptor tyrosine kinase-like orphan receptor 2 (ROR2) is implicated in numerous human cancers. However, there have been conflicting reports regarding ROR2 expression, some studies showing upregulation and others downregulation of ROR2 in the same cancer type. The majority of these studies used immunohistochemistry (IHC) to detect ROR2 protein, without validation of the used antibodies. There appears to be currently no consensus on the antibody best suited for ROR2 detection or how ROR2 expression changes in various cancer types. We examined three commercially available ROR2 antibodies and found that only one bound specifically to ROR2. Another antibody cross-reacted with other proteins, and the third failed to detect ROR2 at all. ROR2 detection by IHC on 107 patient samples using the ROR2 specific antibody showed that the majority of colorectal cancers show loss of ROR2 protein. We found no association between ROR2 staining and poor patient survival, as had been previously reported. These results question the previously reported association between ROR2 and poor patient survival in colorectal cancer. Future studies should use fully validated antibodies when detecting ROR2 protein, as non-specific staining can lead to irrelevant observations and misinterpretations.
Translational Oncology | 2017
Claire E. Henry; Catherine Emmanuel; N. Lambie; C. Loo; B. Kan; Catherine J. Kennedy; A. de Fazio; Neville F. Hacker; Caroline E. Ford
OBJECTIVE: The ROR1 and ROR2 receptor tyrosine kinases have both been implicated in ovarian cancer progression and have been shown to drive migration and invasion. There is an increasing importance of the role of stroma in ovarian cancer metastasis; however, neither ROR1 nor ROR2 expression in tumor or stromal cells has been analyzed in the same clinical cohort. AIM: To determine ROR1 and ROR2 expression in ovarian cancer and surrounding microenvironment and examine associations with clinicopathological characteristics. METHODS: Immunohistochemistry for ROR1 and ROR2 was used to assess receptor expression in a cohort of epithelial ovarian cancer patients (n = 178). Results were analyzed in relation to clinical and histopathological characteristics and survival. Matched patient sample case studies of normal, primary, and metastatic lesions were used to examine ROR expression in relation to ovarian cancer progression. RESULTS: ROR1 and ROR2 are abnormally expressed in malignant ovarian epithelium and stroma. Higher ROR2 tumor expression was found in early-stage, low-grade endometrioid carcinomas. ROR2 stromal expression was highest in the serous subtype. In matched patient case studies, metastatic samples had higher expression of ROR2 in the stroma, and a recurrent sample had the highest expression of ROR2 in both tumor and stroma. CONCLUSION: ROR1 and ROR2 are expressed in tumor-associated stroma in all histological subtypes of ovarian cancer and hold potential as therapeutic targets which may disrupt tumor and stroma interactions.
Oncotarget | 2017
Claire E. Henry; Neville F. Hacker; Caroline E. Ford
OBJECTIVE Elevated expression of the ROR1 and ROR2 Wnt receptors has been noted in both the tumour and stromal compartments of ovarian cancer patient tissue samples. In vitro studies have suggested these receptors play a role in ovarian cancer metastasis. However, these previous studies have utilised simple 2D in vitro models to investigate cancer cell growth and migration, which does not allow investigation of stromal involvement in Wnt driven metastasis. AIM To investigate targeting ROR1 and ROR2 using a primary co-culture 3D model of epithelial ovarian cancer dissemination to the omentum. METHODS Primary fibroblasts (NOF) and mesothelial (HPMC) cells were isolated from fresh samples of omentum collected from women with benign or non-metastatic conditions and cultured with collagen to produce a organotypic 3D model. Stable shRNA knockdown of ROR1, ROR2 and double ROR1/ROR2 in OVCAR4 cells were plated onto the 3D model to measure adhesion, or using a transwell to measure invasion. Gene expression changes in primary cells upon OVCAR4 interaction was evaluated using indirect transwell co-culture. RESULTS Double knockdown of ROR1 and ROR2 strongly inhibited cell adhesion (p<0.05) and invasion (P<0.05) to the omentum model. ROR2 was up regulated in primary fibroblasts when cultured with OVCAR4 (P=0.05) and ectopic overexpression of ROR2 in NOFs inhibited cell proliferation (P<0.01) but increased cell migration. CONCLUSION The combination of ROR1 and ROR2 signalling influences ovarian cancer dissemination to the omentum, however ROR2 may also play a role in stromal activation during metastasis. Therefore, targeting both ROR1 and ROR2 may be a powerful approach to treating ovarian cancer.
Scientific Reports | 2018
Marilisa Cortesi; Estelle Llamosas; Claire E. Henry; Raani-Yogeeta A. Kumaran; Benedict Ng; Janet Youkhana; Caroline E. Ford
The quantification of invasion and migration is an important aspect of cancer research, used both in the study of the molecular processes involved in this collection of diseases and the evaluation of the efficacy of new potential treatments. The transwell assay, while being one of the most widely used techniques for the evaluation of these characteristics, shows a high dependence on the operator’s ability to correctly identify the cells and a low protocol standardization. Here we present I-AbACUS, a software tool specifically designed to aid the analysis of transwell assays that automatically and specifically recognizes cells in images of stained membranes and provides the user with a suggested cell count. A complete description of this instrument, together with its validation against the standard analysis technique for this assay is presented. Furthermore, we show that I-AbACUS is versatile and able to elaborate images containing cells with different morphologies and that the obtained results are less dependent on the operator and their experience. We anticipate that this instrument, freely available (Gnu Public Licence GPL v2) at www.marilisacortesi.com as a standalone application, could significantly improve the quantification of invasion and migration of cancer cells.
Gynecologic Oncology | 2018
Claire E. Henry; Estelle Llamosas; Benjamin Daniels; A. Coopes; K. Tang; Caroline E. Ford
OBJECTIVE In recent years, the Wnt signalling pathway and the ROR1 and ROR2 receptors have been implicated in a range of gynecological cancers. These receptors have been described as prospective therapeutic targets, and this study investigated such potential in an endometrial cancer context. METHOD Immunohistochemistry for ROR1 and ROR2 was performed in a patient cohort, and expression was correlated with clinicopathological parameters including type, stage, grade, myometrial invasion, lymphovascular involvement, patient age and survival. The functional role of these receptors in endometrial cancer was investigated via siRNA knockdown of ROR1 and ROR2 in three cell line models (KLE, RL95-2 and MFE-319). Effects on proliferation, adhesion, migration and invasion were measured. RESULTS High ROR1 expression in patient samples correlated with worse overall survival (p = 0.0169) while high ROR2 expression correlated with better overall survival (p = 0.06). ROR1 knockdown in KLE cells significantly decreased proliferation (p = 0.047) and reduced migration and invasion. ROR2 knockdown in RL95-2 cells increased cell migration and invasion (p = 0.011). Double ROR1 and ROR2 knockdown in MFE-319 cells decreased adhesion and significantly increased cell migration (P = 0.008) and invasion (p < 0.001). CONCLUSION ROR1 and ROR2 play distinct roles in endometrial cancer. ROR1 may promote tumor progression, similar to its role in ovarian cancer, while ROR2 may act as a tumor suppressor in endometrioid endometrial cancer, similar to its role in colorectal cancer. With several ROR-targeting therapies currently in development and phase I clinical trials for other tumor types, this study supports the potential of these receptors as therapeutic targets for women with endometrial cancer.
Virchows Archiv | 2016
Sean S. Q. Ma; Claire E. Henry; Estelle Llamosas; Rupert Higgins; Benjamin Daniels; Luke B. Hesson; Nicholas J. Hawkins; Robyn L. Ward; Caroline E. Ford
Due to a typographical error, Abcam antibody ab92379 was incorrectly listed as a mouse antibodywhen it is in fact a rabbit antibody. The authors apologize for not noticing this error in the proofs. The sentence in the “Methods” section should read as follows: Individual membranes were then incubated with the anti- ROR2 antibodies: rabbit monoclonal (ab92379, Abcam), rabbit polyclonal (HPA021868, Sigma-Aldrich), and mouse monoclonal (QED Bioscience), respectively, at 1:1000 dilution in 3 % milk in TBS-Tween at 4OC overnight. The entries in Table 1 should read as follows: (Table presented.).