Claire Francesca Meehan
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claire Francesca Meehan.
The Journal of Physiology | 2011
Svend Sparre Geertsen; Katinka Stecina; Claire Francesca Meehan; Jens Bo Nielsen; Hans Hultborn
During a movement, the contraction of a given muscle group is often coordinated with the simultaneous relaxation of its antagonist muscles. The neural basis of this antagonist relaxation has been investigated in both animal and human experiments for decades and it is believed that activation of the Ia inhibitory interneurones by central motor programmes plays a major role in this relaxation of antagonist muscles. The alternating movements during locomotion would seem to especially require reciprocal actions, but recent studies have raised significant questions about the role of this inhibition. We found that inhibition evoked by these inhibitory interneurones is largest when their target motoneurones are inactive – even in the absence of supraspinal influence. The results of this work provide new evidence for the role of the Ia inhibitory interneurones during rhythmic motor activity. This supports the classical view of reciprocal inhibition as a basis for antagonist relaxation.
Journal of Neurophysiology | 2011
Shane A. Saywell; Tim W. Ford; Claire Francesca Meehan; Andrew J. Todd; Peter A. Kirkwood
Propriospinal interneurons in the thoracic spinal cord have vital roles not only in controlling respiratory and trunk muscles, but also in providing possible substrates for recovery from spinal cord injury. Intracellular recordings were made from such interneurons in anesthetized cats under neuromuscular blockade and with the respiratory drive stimulated by inhaled CO(2). The majority of the interneurons were shown by antidromic activation to have axons descending for at least two to four segments, mostly contralateral to the soma. In all, 81% of the neurons showed postsynaptic potentials (PSPs) to stimulation of intercostal or dorsal ramus nerves of the same segment for low-threshold (≤ 5T) afferents. A monosynaptic component was present for the majority of the peripherally evoked excitatory PSPs. A central respiratory drive potential was present in most of the recordings, usually of small amplitude. Neurons depolarized in either inspiration or expiration, sometimes variably. The morphology of 17 of the interneurons and/or of their axons was studied following intracellular injection of Neurobiotin; 14 axons were descending, 6 with an additional ascending branch, and 3 were ascending (perhaps actually representing ascending tract cells); 15 axons were crossed, 2 ipsilateral, none bilateral. Collaterals were identified for 13 axons, showing exclusively unilateral projections. The collaterals were widely spaced and their terminations showed a variety of restricted locations in the ventral horn or intermediate area. Despite heterogeneity in detail, both physiological and morphological, which suggests heterogeneity of function, the projections mostly fitted a consistent general pattern: crossed axons, with locally weak, but widely distributed terminations.
The Journal of Physiology | 2007
S. A. Saywell; N. P. Anissimova; Tim W. Ford; Claire Francesca Meehan; Peter A. Kirkwood
The descending control of respiratory‐related motoneurones in the thoracic spinal cord remains the subject of some debate. In this study, direct connections from expiratory bulbospinal neurones to identified motoneurones were investigated using spike‐triggered averaging and the strengths of connection revealed were related to the presence and size of central respiratory drive potentials in the same motoneurones. Intracellular recordings were made from motoneurones in segments T5–T9 of the spinal cord of anaesthetized cats. Spike‐triggered averaging from expiratory bulbospinal neurones in the caudal medulla revealed monosynaptic EPSPs in all groups of motoneurones, with the strongest connections to expiratory motoneurones with axons in the internal intercostal nerve. In the latter, connection strength was similar irrespective of the target muscle (e.g. external abdominal oblique or internal intercostal) and the EPSP amplitude was positively correlated with the amplitude of the central respiratory drive potential of the motoneurone. For this group, EPSPs were found in 45/83 bulbospinal neurone/motoneurone pairs, with a mean amplitude of 40.5 μV. The overall strength of the connection supports previous measurements made by cross‐correlation, but is about 10 times stronger than that reported in the only previous similar survey to use spike‐triggered averaging. Calculations are presented to suggest that this input alone is sufficient to account for all the expiratory depolarization seen in the recorded motoneurones. However, extra sources of input, or amplification of this one, are likely to be necessary to produce a useful motoneurone output.
Nature Protocols | 2017
Claire Francesca Meehan; Kyle A. Mayr; Marin Manuel; Stan T. Nakanishi; Patrick J. Whelan
The adult decerebrate mouse model (a mouse with the cerebrum removed) enables the study of sensory-motor integration and motor output from the spinal cord for several hours without compromising these functions with anesthesia. For example, the decerebrate mouse is ideal for examining locomotor behavior using intracellular recording approaches, which would not be possible using current anesthetized preparations. This protocol describes the steps required to achieve a low-blood-loss decerebration in the mouse and approaches for recording signals from spinal cord neurons with a focus on motoneurons. The protocol also describes an example application for the protocol: the evocation of spontaneous and actively driven stepping, including optimization of these behaviors in decerebrate mice. The time taken to prepare the animal and perform a decerebration takes ∼2 h, and the mice are viable for up to 3–8 h, which is ample time to perform most short-term procedures. These protocols can be modified for those interested in cardiovascular or respiratory function in addition to motor function and can be performed by trainees with some previous experience in animal surgery.
Journal of Neurophysiology | 2015
Anne Hedegaard; Janna Lehnhoff; Mihai Moldovan; Lillian Grøndahl; Nicolas Caesar Petersen; Claire Francesca Meehan
Postactivation depression (PActD) of Ia afferent excitatory postsynaptic potentials (EPSPs) in spinal motoneurons results in a long-lasting depression of the stretch reflex. This phenomenon (PActD) is of clinical interest as it has been shown to be reduced in a number of spastic disorders. Using in vivo intracellular recordings of Ia EPSPs in adult mice, we demonstrate that PActD in adult (100-220 days old) C57BL/6J mice is both qualitatively and quantitatively similar to that which has been observed in larger animals with respect to both the magnitude (with ∼20% depression of EPSPs at 0.5 ms after a train of stimuli) and the time course (returning to almost normal amplitudes by 5 ms after the train). This validates the use of mouse models to study PActD. Changes in such excitatory inputs to spinal motoneurons may have important implications for hyperreflexia and/or glutamate-induced excitotoxicity in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). With the use of the G127X SOD1 mutant mouse, an ALS model with a prolonged asymptomatic phase and fulminant symptom onset, we observed that PActD is significantly reduced at both presymptomatic (16% depression) and symptomatic (17.3% depression) time points compared with aged-matched controls (22.4% depression). The PActD reduction was not markedly altered by symptom onset. Comparing these PActD changes at the EPSP with the known effect of the depression on the monosynaptic reflex, we conclude that this is likely to have a much larger effect on the reflex itself (a 20-40% difference). Nevertheless, it should also be accounted that in aged (580 day old) C57BL/6J mice there was also a reduction in PActD although, aging is not usually associated with spasticity.
Journal of Neurophysiology | 2014
T. W. Ford; Claire Francesca Meehan; Peter A. Kirkwood
Internal intercostal and abdominal motoneurons are strongly coactivated during expiration. We investigated whether that synergy was paralleled by synergistic Group I reflex excitation. Intracellular recordings were made from motoneurons of the internal intercostal nerve of T8 in anesthetized cats, and the specificity of the monosynaptic connections from afferents in each of the two main branches of this nerve was investigated. Motoneurons were shown by antidromic excitation to innervate three muscle groups: external abdominal oblique [EO; innervated by the lateral branch (Lat)], the region of the internal intercostal muscle proximal to the branch point (IIm), and muscles innervated from the distal remainder (Dist). Strong specificity was observed, only 2 of 54 motoneurons showing excitatory postsynaptic potentials (EPSPs) from both Lat and Dist. No EO motoneurons showed an EPSP from Dist, and no IIm motoneurons showed one from Lat. Expiratory Dist motoneurons fell into two groups. Those with Dist EPSPs and none from Lat (group A) were assumed to innervate distal internal intercostal muscle. Those with Lat EPSPs (group B) were assumed to innervate abdominal muscle (transversus abdominis or rectus abdominis). Inspiratory Dist motoneurons (assumed to innervate interchondral muscle) showed Dist EPSPs. Stimulation of dorsal ramus nerves gave EPSPs in 12 instances, 9 being in group B Dist motoneurons. The complete absence of heteronymous monosynaptic Group I reflex excitation between muscles that are synergistically activated in expiration leads us to conclude that such connections from muscle spindle afferents of the thoracic nerves have little role in controlling expiratory movements but, where present, support other motor acts.
Experimental Neurology | 2017
Rikke Maglemose; Anne Hedegaard; Janna Lehnhoff; Kristina Petrova Dimintiyanova; Mihai Moldovan; Lillian Grøndahl; Claire Francesca Meehan
ABSTRACT Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease, which selectively affects upper and lower motoneurones. The underlying pathophysiology of the disease is complex but electrophysiological studies of peripheral nerves in ALS patients as well as human autopsy studies indicate that a potassium channel dysfunction/loss is present early in the symptomatic phase. It remains unclear to what extent potassium channel abnormalities reflect a specific pathogenic mechanism in ALS. The aim of this study was therefore to investigate the temporal changes in the expression and/or function of potassium channels in motoneurones in the adult G127X SOD1 mouse model of ALS, a model which has a very long presymptomatic phase. Evidence from animal models indicates that the early progressive motoneurone dysfunction and degeneration can be largely compensated by motor unit remodeling, delaying the clinical symptom onset. Experiments were therefore performed both before and after symptom onset. Immunohistochemistry of motor axons in the ventral roots of G127X SOD1 mice, was used to investigate juxta‐paranodal Kv1.2 potassium channels along with nodal Nav1.6 and the paranodal scaffolding protein Caspr. This allowed an investigation of changes in the distribution of Kv1.2 relative to the general structure of the nodal‐paranodal‐juxta‐paranodal complex. This revealed that the motor axons in the ventral roots of presymptomatic G127X SOD1 mice, already show a disruption in juxta‐paranodal Kv1.2 potassium channels. The axonal Kv1.2 disruption was preceded by abnormalities in the distribution of the paranodal scaffolding protein Caspr with the nodal arrangement of Nav1.6 appearing relatively preserved even in symptomatic mice. These changes were accompanied by axon swelling and a slowing of conduction in the peripheral motor axons in symptomatic mice. In vivo electrophysiological intracellular recordings of individual spinal motoneurones revealed that central potassium channel function was preserved or even enhanced with higher amplitude and longer duration after‐hyperpolarisations in the G127X SOD1 mice. Our data suggest that the potassium channel abnormalities observed in presymptomatic G127X, rather than representing a specific pathophysiological mechanism targeting potassium channels, most likely reflect early axonal degenerative changes, consistent with the “dying‐back” phenomenon observed in other ALS models. HIGHLIGHTSJuxta‐paranodal Kv1.2 is disrupted in motor axons in the G127X SOD1 model of ALS.The distribution of paranodal Caspr precedes the Kv1.2 disruption.The rate of fall and width of somatic action potentials are normal in G127X mice.AHP are of larger amplitude and longer duration in symptomatic G127X mice.This is more consistent with axon degeneration than a specific K+ channelopathy.
Journal of Neurophysiology | 2016
Tim W. Ford; Natalya P. Anissimova; Claire Francesca Meehan; Peter A. Kirkwood
A previous neurophysiological investigation demonstrated an increase in functional projections of expiratory bulbospinal neurons (EBSNs) in the segment above a chronic lateral thoracic spinal cord lesion that severed their axons. We have now investigated how this plasticity might be manifested in thoracic motoneurons by measuring their respiratory drive and the connections to them from individual EBSNs. In anesthetized cats, simultaneous recordings were made intracellularly from motoneurons in the segment above a left-side chronic (16 wk) lesion of the spinal cord in the rostral part of T8, T9, or T10 and extracellularly from EBSNs in the right caudal medulla, antidromically excited from just above the lesion but not from below. Spike-triggered averaging was used to measure the connections between pairs of EBSNs and motoneurons. Connections were found to have a very similar distribution to normal and were, if anything (nonsignificantly), weaker than normal, being present for 42/158 pairs, vs. 55/154 pairs in controls. The expiratory drive in expiratory motoneurons appeared stronger than in controls but again not significantly so. Thus we conclude that new connections made by the EBSNs following these lesions were made to neurons other than α-motoneurons. However, a previously unidentified form of functional plasticity was seen in that there was a significant increase in the excitation of motoneurons during postinspiration, being manifest either in increased incidence of expiratory decrementing respiratory drive potentials or in an increased amplitude of the postinspiratory depolarizing phase in inspiratory motoneurons. We suggest that this component arose from spinal cord interneurons.
Journal of Applied Physiology | 2015
T. Randsoe; Claire Francesca Meehan; H. Broholm; O. Hyldegaard
Nitric oxide (NO) releasing agents have, in experimental settings, been shown to decrease intravascular nitrogen bubble formation and to increase the survival rate during decompression sickness (DCS) from diving. The effect has been ascribed to a possible removal of preexisting micronuclei or an increased nitrogen washout on decompression through augmented blood flow rate. The present experiments were conducted to investigate whether a short- or long-acting NO donor [glycerol trinitrate (GTN) or isosorbide-5-mononitrate (ISMN), respectively] would offer the same protection against spinal cord DCS evaluated by means of spinal evoked potentials (SEPs). Anesthetized rats were decompressed from a 1-h hyperbaric air dive at 506.6 kPa (40 m of seawater) for 3 min and 17 s, and spinal cord conduction was studied by measurements of SEPs. Histological samples of the spinal cord were analyzed for lesions of DCS. In total, 58 rats were divided into 6 different treatment groups. The first three received either saline (group 1), 300 mg/kg iv ISMN (group 2), or 10 mg/kg ip GTN (group 3) before compression. The last three received either 300 mg/kg iv ISMN (group 4), 1 mg/kg iv GTN (group 5), or 75 μg/kg iv GTN (group 6) during the dive, before decompression. In all groups, decompression caused considerable intravascular bubble formation. The ISMN groups showed no difference compared with the control group, whereas the GTN groups showed a tendency toward faster SEP disappearance and shorter survival times. In conclusion, neither a short- nor long-acting NO donor had any protective effect against fatal DCS by intravenous bubble formation. This effect is most likely due to a fast ascent rate overriding the protective effects of NO, rather than the total inert tissue gas load.
Current Pharmaceutical Design | 2013
Hans Hultborn; Mengliang Zhang; Claire Francesca Meehan