Claire Germain
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claire Germain.
Cancer Research | 2014
Jeremy Goc; Claire Germain; Thi Kim Duy Vo-Bourgais; Audrey Lupo; Christophe Klein; Samantha Knockaert; Luc de Chaisemartin; Hanane Ouakrim; Etienne Becht; Marco Alifano; Pierre Validire; Romain Remark; Scott A. Hammond; Isabelle Cremer; Diane Damotte; Wolf-Herman Fridman; Marie-Caroline Dieu-Nosjean
Tumor-infiltrating T cells, particularly CD45RO(+)CD8(+) memory T cells, confer a positive prognostic value in human cancers. However, the mechanisms that promote a protective T-cell response in the tumor microenvironment remain unclear. In chronic inflammatory settings such as the tumor microenvironment, lymphoid neogenesis can occur to create local lymph node-like structures known as tertiary lymphoid structures (TLS). These structures can exacerbate a local immune response, such that TLS formation in tumors may help promote an efficacious immune contexture. However, the role of TLS in tumors has yet to be investigated carefully. In lung tumors, mature dendritic cells (DC) present in tumor-associated TLS can provide a specific marker of these structures. In this study, we evaluated the influence of TLS on the characteristics of the immune infiltrate in cohorts of prospective and retrospective human primary lung tumors (n = 458). We found that a high density of mature DC correlated closely to a strong infiltration of T cells that are predominantly of the effector-memory phenotype. Moreover, mature DC density correlated with expression of genes related to T-cell activation, T-helper 1 (Th1) phenotype, and cytotoxic orientation. Lastly, a high density of TLS-associated DC correlated with long-term survival, which also allowed a distinction of patients with high CD8(+) T-cell infiltration but a high risk of death. Taken together, our results show how tumors infiltrated by TLS-associated mature DC generate a specific immune contexture characterized by a strong Th1 and cytotoxic orientation that confers the lowest risk of death. Furthermore, our findings highlight the pivotal function of TLS in shaping the immune character of the tumor microenvironment, in promoting a protective immune response mediated by T cells against cancer.
American Journal of Respiratory and Critical Care Medicine | 2014
Claire Germain; Sacha Gnjatic; Fella Tamzalit; Samantha Knockaert; Romain Remark; Jeremy Goc; Alice Lepelley; Etienne Becht; Sandrine Katsahian; Geoffray Bizouard; Pierre Validire; Diane Damotte; Marco Alifano; Pierre Magdeleinat; Isabelle Cremer; Jean-Luc Teillaud; Wolf-Herman Fridman; Marie-Caroline Dieu-Nosjean
RATIONALE It is now well established that immune responses can take place outside of primary and secondary lymphoid organs. We previously described the presence of tertiary lymphoid structures (TLS) in patients with non-small cell lung cancer (NSCLC) characterized by clusters of mature dendritic cells (DCs) and T cells surrounded by B-cell follicles. We demonstrated that the density of these mature DCs was associated with favorable clinical outcome. OBJECTIVES To study the role of follicular B cells in TLS and the potential link with a local humoral immune response in patients with NSCLC. METHODS The cellular composition of TLS was investigated by immunohistochemistry. Characterization of B-cell subsets was performed by flow cytometry. A retrospective study was conducted in two independent cohorts of patients. Antibody specificity was analyzed by ELISA. MEASUREMENTS AND MAIN RESULTS Consistent with TLS organization, all stages of B-cell differentiation were detectable in most tumors. Germinal center somatic hypermutation and class switch recombination machineries were activated, associated with the generation of plasma cells. Approximately half of the patients showed antibody reactivity against up to 7 out of the 33 tumor antigens tested. A high density of follicular B cells correlated with long-term survival, both in patients with early-stage NSCLC and with advanced-stage NSCLC treated with chemotherapy. The combination of follicular B cell and mature DC densities allowed the identification of patients with the best clinical outcome. CONCLUSIONS B-cell density represents a new prognostic biomarker for NSCLC patient survival, and makes the link between TLS and a protective B cell-mediated immunity.
Journal of Biological Chemistry | 2011
Claire Germain; Anders Meier; Teis Jensen; Perrine Knapnougel; Gwenola Poupon; Anne Lazzari; Anne Neisig; Katarina Håkansson; Tao Dong; Nicolai Wagtmann; Elizabeth D. Galsgaard; Pieter Spee; Veronique M. Braud
Background: CD161 expressed by NK cells and T cells interacts with LLT1. Results: LLT1 expression profile reveals LLT1 is induced by pathogens and IFN-γ and LLT1/CD161 interaction inhibits NK cell functions whereas it costimulates T cells. Conclusion: The link between LLT1 expression and pathogen stimulation points toward a role in modulating immune responses to pathogens Significance: LLT1/CD161 interaction is relevant in immunity to infection. CD161 is a C-type lectin-like receptor expressed on human natural killer (NK) cells and subsets of T cells. CD161 has been described as an inhibitory receptor that regulates NK cell-mediated cytotoxicity and IFN-γ production. Its role on T cells has remained unclear. Studies have shown that triggering of CD161 enhances NK T cell proliferation and T cell-IFN-γ production while inhibiting TNF-α production by CD8+ T cells. Lectin-like transcript 1 (LLT1), the ligand of CD161, was found to be expressed on Toll-like receptor (TLR)-activated plasmacytoid and monocyte-derived dendritic cells (DC) and on activated B cells. Using newly developed anti-LLT1 mAbs, we show that LLT1 is not expressed on the surface of circulating B and T lymphocytes, NK cells, monocytes, and dendritic cells but that LLT1 is up-regulated upon activation. Not only TLR-stimulated dendritic cells and B cells but also T cell receptor-activated T cells and activated NK cells up-regulate LLT1. Interestingly, IFN-γ increases LLT1 expression level on antigen-presenting cells. LLT1 is also induced on B cells upon viral infection such as Epstein-Barr virus or HIV infection and in inflamed tonsils. Finally, expression of LLT1 on B cells inhibits NK cell function but costimulates T cell proliferation or IFN-γ production, and coengagement of CD161 with CD3 increases IL-17 secretion. Altogether, our results point toward a role for LLT1/CD161 in modulating immune responses to pathogens.
Immunological Reviews | 2016
Marie-Caroline Dieu-Nosjean; Nicolas A. Giraldo; Hélène Kaplon; Claire Germain; Wolf H. Fridman
The characterization of the microenvironment of human tumors led to the description of tertiary lymphoid structures (TLS) characterized by mature dendritic cells in a T‐cell zone adjacent to B‐cell follicle including a germinal center. TLS represent sites of lymphoid neogenesis that develop in most solid cancers. Analysis of the current literature shows that the TLS presence is associated with a favorable clinical outcome for cancer patients, regardless of the approach used to quantify TLS and the stage of the disease. Using several approaches that combine immunohistochemistry, gene expression assays, and flow cytometry on large series of lung tumors, our work demonstrated that TLS are important sites for the initiation and/or maintenance of the local and systemic T‐ and B‐cell responses against tumors. Surrounded by high endothelial venules, they represent a privileged area for the recruitment of lymphocytes into tumors and generation of central‐memory T and B cells that circulate and limit cancer progression. TLS can be considered as a novel biomarker to stratify the overall survival risk of untreated cancer patients and as a marker of efficient immunotherapies. The induction and manipulation of cancer‐associated TLS using drug agonists and/or biotherapies should open new avenues to treat cancer patients.
Advances in Immunology | 2016
Etienne Becht; Nicolas A. Giraldo; Claire Germain; de Reyniès A; Pierre Laurent-Puig; Jessica Zucman-Rossi; Marie-Caroline Dieu-Nosjean; Wolf Hervé Fridman
The outcome of tumors results from genetic and epigenetic modifications of the transformed cells and also from the interactions of the malignant cells with their tumor microenvironment (TME), which includes immune and inflammatory cells. For a given cancer type, the composition of the immunological TME is not homogeneous. Heterogeneity is found between different cancer types and also between tumors from patients with the same type of cancer. Some tumors exhibit a poor infiltration by immune cells, and others are highly infiltrated by lymphocytes. Among the latter, the architecture of the TME, with the localization of immune cells in the invasive front and the center of the tumor, the presence of tumor-adjacent organized lymphoid aggregates, and the type of inflammatory context, determines the prognostic impact of the infiltrating cells. The description and the understanding of the immune and inflammatory landscape in human tumors are of paramount importance at different levels of patients care. It completes the mutational, transcriptional, and epigenetic patterns of the malignant cells and open paths to understand how tumor cells shape their immune microenvironment and are shaped by the immune reaction. It provides prognostic and theranostic markers, as well as novel targets for immunotherapies.
Frontiers in Immunology | 2016
Myriam Lawand; Nicolas A. Giraldo; Hélène Kaplon; Claire Germain; Wolf H. Fridman; Marie-Caroline Dieu-Nosjean
Tertiary lymphoid structures (TLS) are ectopic lymphoid aggregates that reflect lymphoid neogenesis occurring in tissues at sites of inflammation. They are detected in tumors where they orchestrate local and systemic anti-tumor responses. A correlation has been found between high densities of TLS and prolonged patient’s survival in more than 10 different types of cancer. TLS can be regulated by the same set of chemokines and cytokines that orchestrate lymphoid organogenesis and by regulatory T cells. Thus, TLS offer a series of putative new targets that could be used to develop therapies aiming to increase the anti-tumor immune response.
Frontiers in Immunology | 2015
Claire Germain; Sacha Gnjatic; Marie-Caroline Dieu-Nosjean
It is now admitted that the immune system plays a major role in tumor control. Besides the existence of tumor-specific T cells and B cells, many studies have demonstrated that high numbers of tumor-infiltrating lymphocytes are associated with good clinical outcome. In addition, not only the density but also the organization of tumor-infiltrating immune cells has been shown to determine patient survival. Indeed, more and more studies describe the development within the tumor microenvironment of tertiary lymphoid structures (TLS), whose presence has a positive impact on tumor prognosis. TLS are transient ectopic lymphoid aggregates displaying the same organization and functionality as canonical secondary lymphoid organs, with T-cell-rich and B-cell-rich areas that are sites for the differentiation of effector and memory T cells and B cells. However, factors favoring the emergence of such structures within tumors still need to be fully characterized. In this review, we survey the state of the art of what is known about the general organization, induction, and functionality of TLS during chronic inflammation, and more especially in cancer, with a particular focus on the B-cell compartment. We detail the role played by TLS B cells in anti-tumor immunity, both as antigen-presenting cells and tumor antigen-specific antibody-secreting cells, and raise the question of the capacity of chemotherapeutic and immunotherapeutic agents to induce the development of TLS within tumors. Finally, we explore how to take advantage of our knowledge on TLS B cells to develop new therapeutic tools.
Clinical Cancer Research | 2005
Claire Germain; Christel Larbouret; Valérie Cesson; Alena Donda; Werner Held; Jean-Pierre Mach; André Pèlegrin; Bruno Robert
Purpose: As a first step for the development of a new cancer immunotherapy strategy, we evaluated whether antibody-mediated coating by MHC class I–related chain A (MICA) could sensitize tumor cells to lysis by natural killer (NK) cells. Experimental Design: Recombinant MICA (rMICA) was chemically conjugated to Fab′ fragments from monoclonal antibodies specific for tumor-associated antigens, such as carcinoembryonic antigen, HER2, or CD20. Results: Flow cytometry analysis showed an efficient coating of MICA-negative human cancer cell lines with the Fab-rMICA conjugates. This was strictly dependent on the expression of the appropriate tumor-associated antigens in the target cells. Importantly, preincubation of the tumor cells with the appropriate Fab-rMICA conjugate resulted in NK cell–mediated tumor cell lysis. Antibody blocking of the NKG2D receptor in NK cells prevented conjugate-mediated tumor cell lysis. Conclusions: These results open the way to the development of immunotherapy strategies based on antibody-mediated targeting of MICA.
Journal of Biological Chemistry | 2010
Claire Germain; Franck Bihl; Stefan Zahn; Gwenola Poupon; Marie-Jeanne Dumaurier; Hariniaina Henintsoa Rampanarivo; Søren Berg Padkjær; Pieter Spee; Veronique M. Braud
Lectin-like transcript 1 (LLT1) encoded by CLEC2D gene is a C-type lectin-like molecule interacting with human CD161 (NKR-P1A) receptor expressed by natural killer cells and subsets of T cells. Using RT-PCR and sequencing, we identified several CLEC2D alternatively spliced transcript variants generated by exon skipping. In addition to the reported transcript variants 1 (LLT1) and 2, we identified a novel splice variant 4 and transcripts coding for putative soluble proteins. CLEC2D transcripts were detected primarily in hematopoietic cell lines and were found to be co-induced by the same activation signals. Although very low amounts of putative soluble CLEC2D protein isoforms could be produced by transfectants, CLEC2D isoforms 2 and 4 were efficiently expressed. By contrast to LLT1, which was detected on the cell surface, isoform 2 and 4 remained in the endoplasmic reticulum where they formed homodimers or heterodimers with LLT1. They failed to interact with CD161, leaving LLT1 as the sole ligand for this receptor. CLEC2D therefore uses gene splicing to generate protein isoforms that are structurally distinct and that have different biological activities.
Clinical Cancer Research | 2017
Nicolas A. Giraldo; Etienne Becht; Yann Vano; Florent Petitprez; Laetitia Lacroix; Pierre Validire; Rafael Sanchez-Salas; Alexandre Ingels; Stéphane Oudard; Audrey Moatti; Bénédicte Buttard; Sarah Bourras; Claire Germain; Xavier Cathelineau; Wolf-Herman Fridman
Purpose: The efficacy of PD-1 checkpoint blockade as adjuvant therapy in localized clear cell renal cell carcinoma (ccRCC) is currently unknown. The identification of tumor microenvironment (TME) prognostic biomarkers in this setting may help define which patients could benefit from checkpoint blockade and uncover new therapeutic targets. Experimental Design: We performed multiparametric flow cytometric immunophenotypic analysis of T cells isolated from tumor tissue [tumor-infiltrating lymphocytes (TIL)], adjacent non-malignant renal tissue [renal-infiltrating lymphocytes (RIL)], and peripheral blood lymphocytes (PBL), in a cohort of patients (n = 40) with localized ccRCC. Immunophenotypic data were integrated with prognostic and histopathologic variables, T-cell receptor (TCR) repertoire analysis of sorted CD8+PD-1+ TILs, tumor mRNA expression, and digital quantitative immunohistochemistry. Results: On the basis of TIL phenotypic characterization, we identified three dominant immune profiles in localized ccRCC: (i) immune-regulated, characterized by polyclonal/poorly cytotoxic CD8+PD-1+Tim-3+Lag-3+ TILs and CD4+ICOS+ cells with a Treg phenotype (CD25+CD127−Foxp3+/Helios+GITR+), that developed in inflamed tumors with prominent infiltrations by dysfunctional dendritic cells and high PD-L1 expression; (ii) immune-activated, enriched in oligoclonal/cytotoxic CD8+PD-1+Tim-3+ TILs, that represented 22% of the tumors; and (iii) immune-silent, enriched in TILs exhibiting RIL-like phenotype, that represented 56% of patients in the cohort. Only immune-regulated tumors displayed aggressive histologic features, high risk of disease progression in the year following nephrectomy, and a CD8+PD-1+Tim-3+ and CD4+ICOS+ PBL phenotypic signature. Conclusions: In localized ccRCC, the infiltration with CD8+PD-1+Tim-3+Lag-3+ exhausted TILs and ICOS+ Treg identifies the patients with deleterious prognosis who could benefit from adjuvant therapy with TME-modulating agents and checkpoint blockade. This work also provides PBL phenotypic markers that could allow their identification. Clin Cancer Res; 23(15); 4416–28. ©2017 AACR.