Claire Guinat
Royal Veterinary College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claire Guinat.
Veterinary Research | 2014
Claire Guinat; Ana Luisa Reis; Christopher L. Netherton; Lynnette Goatley; Dirk U. Pfeiffer; Linda K. Dixon
African swine fever virus (ASFV) is a highly virulent swine pathogen that has spread across Eastern Europe since 2007 and for which there is no effective vaccine or treatment available. The dynamics of shedding and excretion is not well known for this currently circulating ASFV strain. Therefore, susceptible pigs were exposed to pigs intramuscularly infected with the Georgia 2007/1 ASFV strain to measure those dynamics through within- and between-pen transmission scenarios. Blood, oral, nasal and rectal fluid samples were tested for the presence of ASFV by virus titration (VT) and quantitative real-time polymerase chain reaction (qPCR). Serum was tested for the presence of ASFV-specific antibodies. Both intramuscular inoculation and contact transmission resulted in development of acute disease in all pigs although the experiments indicated that the pathogenesis of the disease might be different, depending on the route of infection. Infectious ASFV was first isolated in blood among the inoculated pigs by day 3, and then chronologically among the direct and indirect contact pigs, by day 10 and 13, respectively. Close to the onset of clinical signs, higher ASFV titres were found in blood compared with nasal and rectal fluid samples among all pigs. No infectious ASFV was isolated in oral fluid samples although ASFV genome copies were detected. Only one animal developed antibodies starting after 12 days post-inoculation. The results provide quantitative data on shedding and excretion of the Georgia 2007/1 ASFV strain among domestic pigs and suggest a limited potential of this isolate to cause persistent infection.
Veterinary Record | 2016
Claire Guinat; A. Gogin; Sandra Blome; Guenther Keil; Reiko Pollin; Dirk U. Pfeiffer; Linda K. Dixon
African swine fever (ASF) is a major threat to the pig industry in Europe. Since 2007, ASF outbreaks have been ongoing in the Caucasus, Eastern Europe and the Baltic countries, causing severe economic losses for many pig farmers and pork producers. In addition, the number of ASF cases in wild boar populations has dramatically increased over the past few years. Evidence supports direct contact with infectious domestic pigs and wild boars, and consumption of contaminated feed, as the main transmission routes of ASF virus (ASFV) to domestic pigs. However, significant knowledge gaps highlight the urgent need for research to investigate the dynamics of indirect transmission via the environment, the minimal infective doses for contaminated feed ingestion, the probability of effective contacts between infectious wild boars and domestic pigs, the potential for recovered animals to become carriers and a reservoir for transmission, the potential virus persistence within wild boar populations and the influence of human behaviour for the spread of ASFV. This will provide an improved scientific basis to optimise current interventions and develop new tools and strategies to reduce the risk of ASFV transmission to domestic pigs.
Epidemiology and Infection | 2016
Claire Guinat; S. Gubbins; Timothée Vergne; J. L. Gonzales; Linda K. Dixon; Dirk U. Pfeiffer
SUMMARY African swine fever virus (ASFV) continues to cause outbreaks in domestic pigs and wild boar in Eastern European countries. To gain insights into its transmission dynamics, we estimated the pig-to-pig basic reproduction number (R0) for the Georgia 2007/1 ASFV strain using a stochastic susceptible-exposed-infectious-recovered (SEIR) model with parameters estimated from transmission experiments. Models showed that R0 is 2·8 [95% confidence interval (CI) 1·3–4·8] within a pen and 1·4 (95% CI 0·6–2·4) between pens. The results furthermore suggest that ASFV genome detection in oronasal samples is an effective diagnostic tool for early detection of infection. This study provides quantitative information on transmission parameters for ASFV in domestic pigs, which are required to more effectively assess the potential impact of strategies for the control of between-farm epidemic spread in European countries.
Transboundary and Emerging Diseases | 2016
Timothée Vergne; Claire Guinat; P. Petkova; A. Gogin; D. Kolbasov; Sandra Blome; Sophie Molia; J. Pinto Ferreira; Barbara Wieland; H. Nathues; Dirk U. Pfeiffer
This study investigated the attitudes and beliefs of pig farmers and hunters in Germany, Bulgaria and the western part of the Russian Federation towards reporting suspected cases of African swine fever (ASF). Data were collected using a web-based questionnaire survey targeting pig farmers and hunters in these three study areas. Separate multivariable logistic regression models identified key variables associated with each of the three binary outcome variables whether or not farmers would immediately report suspected cases of ASF, whether or not hunters would submit samples from hunted wild boar for diagnostic testing and whether or not hunters would report wild boar carcasses. The results showed that farmers who would not immediately report suspected cases of ASF are more likely to believe that their reputation in the local community would be adversely affected if they were to report it, that they can control the outbreak themselves without the involvement of veterinary services and that laboratory confirmation would take too long. The modelling also indicated that hunters who did not usually submit samples of their harvested wild boar for ASF diagnosis, and hunters who did not report wild boar carcasses are more likely to justify their behaviour through a lack of awareness of the possibility of reporting. These findings emphasize the need to develop more effective communication strategies targeted at pig farmers and hunters about the disease, its epidemiology, consequences and control methods, to increase the likelihood of early reporting, especially in the Russian Federation where the virus circulates.
Transboundary and Emerging Diseases | 2017
K. Davies; Lynnette Goatley; Claire Guinat; Chris Netherton; Simon Gubbins; Linda K. Dixon; Ana Luisa Reis
Summary African swine fever virus (ASFV) causes a lethal haemorrhagic disease of swine which can be transmitted through direct contact with infected animals and their excretions or indirect contact with contaminated fomites. The shedding of ASFV by infected pigs and the stability of ASFV in the environment will determine the extent of environmental contamination. The recent outbreaks of ASF in Europe make it essential to develop disease transmission models in order to design effective control strategies to prevent further spread of ASF. In this study, we assessed the shedding and stability of ASFV in faeces, urine and oral fluid from pigs infected with the Georgia 2007/1 ASFV isolate. The half‐life of infectious ASFV in faeces was found to range from 0.65 days when stored at 4°C to 0.29 days when stored at 37°C, while in urine it was found to range from 2.19 days (4°C) to 0.41 days (37°C). Based on these half‐lives and the estimated dose required for infection, faeces and urine would be estimated to remain infectious for 8.48 and 15.33 days at 4°C and 3.71 and 2.88 days at 37°C, respectively. The half‐life of ASFV DNA was 8 to 9 days in faeces and 2 to 3 days in oral fluid at all temperatures. In urine, the half‐life of ASFV DNA was found to be 32.54 days at 4°C decreasing to 19.48 days at 37°C. These results indicate that ASFV in excretions may be an important route of ASFV transmission.
Scientific Reports | 2016
Claire Guinat; Anne Relun; B. Wall; Aaron Morris; Linda K. Dixon; Dirk U. Pfeiffer
An understanding of the patterns of animal contact networks provides essential information for the design of risk-based animal disease surveillance and control strategies. This study characterises pig movements throughout England and Wales between 2009 and 2013 with a view to characterising spatial and temporal patterns, network topology and trade communities. Data were extracted from the Animal and Plant Health Agency (APHA)’s RADAR (Rapid Analysis and Detection of Animal-related Risks) database, and analysed using descriptive and network approaches. A total of 61,937,855 pigs were moved through 872,493 movements of batches in England and Wales during the 5-year study period. Results show that the network exhibited scale-free and small-world topologies, indicating the potential for diseases to quickly spread within the pig industry. The findings also provide suggestions for how risk-based surveillance strategies could be optimised in the country by taking account of highly connected holdings, geographical regions and time periods with the greatest number of movements and pigs moved, as these are likely to be at higher risk for disease introduction. This study is also the first attempt to identify trade communities in the country, information which could be used to facilitate the pig trade and maintain disease-free status across the country in the event of an outbreak.
Veterinary Record | 2017
Claire Guinat; Timothée Vergne; C Jurado-Diaz; J-M Sanchez-Vizcaino; Linda K. Dixon; Dirk U. Pfeiffer
African swine fever (ASF) is a major pig health problem, and the causative virus is moving closer to Western European regions where pig density is high. Stopping or slowing down the spread of ASF requires mitigation strategies that are both effective and practical. Based on the elicitation of ASF expert opinion, this study identified surveillance and intervention strategies for ASF that are perceived as the most effective by providing the best combination between effectiveness and practicality. Among the 20 surveillance strategies that were identified, passive surveillance of wild boar and syndromic surveillance of pig mortality were considered to be the most effective surveillance strategies for controlling ASF virus spread. Among the 22 intervention strategies that were identified, culling of all infected herds and movement bans for neighbouring herds were regarded as the most effective intervention strategies. Active surveillance and carcase removal in wild boar populations were rated as the most effective surveillance and intervention strategies, but were also considered to be the least practical, suggesting that more research is needed to develop more effective methods for controlling ASF in wild boar populations.
PLOS ONE | 2016
Claire Guinat; Ben Wall; Linda K. Dixon; Dirk U. Pfeiffer
African swine fever (ASF) is a notifiable, virulent swine disease, and is a major threat to animal health and trade for many European Union (EU) countries. Early detection of the introduction of ASF virus is of paramount importance to be able to limit the potential extent of outbreaks. However, the timely and accurate reporting of ASF primary cases strongly depends on how familiar pig farmers are with the clinical signs, and their motivation to report the disease. Here, an online questionnaire survey was conducted between December 2014 and April 2015 to investigate English pig farmers’ knowledge and behaviour towards ASF in terms of clinical suspicion and reporting. Multivariable logistic regression analysis was used to identify factors influencing the two variables of interest: 1) farmers who “would immediately suspect ASF” if they observed clinical signs of fever, lethargy, reduced eating and high mortality on their farm and 2) farmers who “would immediately report ASF” if they suspected ASF on their farm. The questionnaire was completed by 109 pig farmers. Results indicate that pig farmers having poor knowledge about ASF clinical signs and limited concern about ASF compared with other pig diseases are less likely to consider the possibility of an outbreak of ASF on their farm. In addition, pig farmers lacking awareness of outbreaks in other countries, having a perception of the negative impact on them resulting from false positive reporting and the perceived complexity of reporting procedures are less likely to report an ASF suspicion. These findings indicate important areas for educational campaigns targeted at English pig farmers to focus on in an attempt to increase the likelihood of a rapid response in the event of an ASF outbreak.
Transboundary and Emerging Diseases | 2018
Claire Guinat; Thibaud Porphyre; A. Gogin; Linda K. Dixon; Dirk U. Pfeiffer; Simon Gubbins
Summary Mortality data are routinely collected for many livestock and poultry species, and they are often used for epidemiological purposes, including estimating transmission parameters. In this study, we infer transmission rates for African swine fever virus (ASFV), an important transboundary disease of swine, using mortality data collected from nine pig herds in the Russian Federation with confirmed outbreaks of ASFV. Parameters in a stochastic model for the transmission of ASFV within a herd were estimated using approximate Bayesian computation. Estimates for the basic reproduction number varied amongst herds, ranging from 4.4 to 17.3. This was primarily a consequence of differences in transmission rate (range: 0.7–2.2), but also differences in the mean infectious period (range: 4.5–8.3 days). We also found differences amongst herds in the mean latent period (range: 5.8–9.7 days). Furthermore, our results suggest that ASFV could be circulating in a herd for several weeks before a substantial increase in mortality is observed in a herd, limiting the usefulness of mortality data as a means of early detection of an outbreak. However, our results also show that mortality data are a potential source of data from which to infer transmission parameters, at least for diseases which cause high mortality.
Epidemiology and Infection | 2016
Claire Guinat; Simon Gubbins; Timothée Vergne; J. L. Gonzales; Linda K. Dixon; Dirk U. Pfeiffer
African swine fever virus (ASFV) continues to cause outbreaks in domestic pigs and wild boar in Eastern European countries. To gain insights into its transmission dynamics, we estimated the pig-to-pig basic reproduction number (R0) for the Georgia 2007/1 ASFV strain using a stochastic susceptible-exposed-infectious-recovered (SEIR) model with parameters estimated from transmission experiments. Models showed that R0 is 2·8 [95% confidence interval (CI) 1·3–4·8] within a pen and 1·4 (95% CI 0·6–2·4) between pens. The results furthermore suggest that ASFV genome detection in oronasal samples is an effective diagnostic tool for early detection of infection. This study provides quantitative information on transmission parameters for ASFV in domestic pigs, which are required to more effectively assess the potential impact of strategies for the control of between-farm epidemic spread in European countries.