Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire-Hélène Brachais is active.

Publication


Featured researches published by Claire-Hélène Brachais.


Polymer Chemistry | 2012

Organo-catalyzed synthesis of aliphatic polycarbonates in solvent-free conditions

Prashant U. Naik; Karima Refes; Faten Sadaka; Claire-Hélène Brachais; Gilles Boni; Jean-Pierre Couvercelle; Michel Picquet; Laurent Plasseraud

A new efficient and expeditious route to the synthesis of aliphatic polycarbonates, in solvent-free conditions and using 1-n-butyl-3-methylimidazolium-2-carboxylate (BMIM-2-CO2) as a catalyst precursor, is described. The protocol consists of a two-step polymerization process involving the transesterification of dimethyl carbonate (DMC) with linear alkane diols and leading to high molecular weight homopolymers. The reaction went to completion quantitatively with the liberation of methanol as the only by-product. The in situ formation of N-heterocyclic carbene species resulting from BMIM-2-CO2 decarboxylation is suggested to be a key feature of the condensation process. The protocol was then applied to the copolymerization of diverse diols leading to the synthesis of polycarbonates with average segment lengths and random sequences.


Applied Surface Science | 2002

Surface investigation of adhesive formulation consisting of UV sensitive triblock poly(styrene–b-butadiene–b-styrene) copolymer

Maud Staeger; Eric Finot; Claire-Hélène Brachais; Stephane Auguste; Herve Durand

Abstract Atomic force microscopy (AFM) analysis in conjunction with macroscopic studies such as peel testing and contact angle measurement have been undertaken to explain the nanomechanical properties of adhesive formulation consisting of triblock poly(styrene–b-butadiene–b-styrene) (SBS) copolymers. The cross-linking of this photosensitive copolymer was investigated by analyzing the mechanical and morphological changes of each phase induced by the UV exposure. Main result is that the adhesive properties are strongly influenced by the cross-linking of the polybutadiene (PB) phase leading to an increase in the surface stiffness without affecting the surface energy. AFM analysis shows that the adhesion force is mostly governed by the contact area between the adhesive and the probe. The surface mobility may explain the increase in adhesion for this pressure sensitive copolymer.


Beilstein Journal of Organic Chemistry | 2013

1-n-Butyl-3-methylimidazolium-2-carboxylate: a versatile precatalyst for the ring-opening polymerization of ε-caprolactone and rac-lactide under solvent-free conditions

Astrid Hoppe; Faten Sadaka; Claire-Hélène Brachais; Gilles Boni; Jean-Pierre Couvercelle; Laurent Plasseraud

Summary The ring-opening polymerization of ε-caprolactone (ε-CL) and rac-lactide (rac-LA) under solvent-free conditions and using 1-n-butyl-3-methylimidazolium-2-carboxylate (BMIM-2-CO2) as precatalyst is described. Linear and star-branched polyesters were synthesized by successive use of benzyl alcohol, ethylene glycol, glycerol and pentaerythritol as initiator alcohols, and the products were fully characterized by 1H and 13C{1H} NMR spectroscopy, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). BMIM-2-CO2 acts as an N-heterocyclic carbene precursor, resulting from in situ decarboxylation, either by heating under vacuo (method A) or by addition of NaBPh4 (method B). Possible catalytic and deactivation mechanisms are proposed.


Journal of Macromolecular Science, Part A | 2010

Characterizations of Thermoplastic Block Elastomers Based on Polybutadiene and ε -Caprolactone

Michael Lemoine; Claire-Hélène Brachais; Gilles Boni; Laurent Brachais; Jean-Pierre Couvercelle

A broad series of tri- and multiblock copolymers based on linear and branched oligomers of polybutadiene as central blocks and polycaprolactone (PCL) as block extremities are characterized by SEC, DSC, DMA, Dynamical Rheology and DRX. DSC analyses reveal phase separation between the two amorphous PB and PCL phases. By thermal analysis, the glass transition temperature of PCL is only detected for materials containing at least 80% w/w of PCL. This is attributed to the small length of the polyester blocks for copolymers containing less than 80% w/w of PCL. The increase of fusion heat with increasing PCL content in the copolymers is correlated to the greater ability of PCL chains to rearrange as HTPB amount decrease in the material. Regarding the evolution of the melting temperature of the various copolymers, the characterization by DMA and dynamical rheology confirms the behaviour observed by DSC. Mechanical and rheological properties (i.e., storage modulus and complex viscosities) were studied and reveal that the behavior of the copolymers depends on both the rate of PCL chains and on the nature of the elastomeric block.


Journal of Macromolecular Science, Part A | 2012

Designing Medical Devices Based on Silicon Polymeric Material with Controlled Release of Local Anesthetics

G. Petrisor; Rodica-Mariana Ion; Claire-Hélène Brachais; J-P. Couvercelle; O. Chambin

The drug delivery systems that are the object of this article take the form of a polymer matrix made of silicone containing a drug. These devices can be used as patches for local dermal applications releasing the drug in a controlled manner. The model active agent, lidocaine hydrochloride was chosen from the range of local anesthetics. When the drug is restricted to the surface, it is released more rapidly than when it is allowed to spread evenly throughout the silicon structure. When hydrophilic polymers such as PVA and HEC are mixed in with the lidocaine hydrochloride and deposited on the surface of the polymer matrix, we observed that the burst effect was eliminated without modifying the overall quantity of lidocaine hydrochloride released.


Journal of Macromolecular Science, Part A | 2012

In Vitro Release of Local Anaesthetic and Anti-Inflammatory Drugs from Crosslinked Collagen Based Device

G. Petrisor; Rodica-Mariana Ion; Claire-Hélène Brachais; Gilles Boni; Laurent Plasseraud; Jean-Pierre Couvercelle; O. Chambin

The drug delivery systems that are the object of this article take the form of a hydrophilic matrix (collagen or crosslinked collagen) containing a drug. These devices can be used as The model active agents, were chosen from the range of local anaesthetics (lidocaine hydrochloride), anti-inflammatory (diclofenac sodium salt) and antioxydant (caffeic acid). Whatever the drug affinity for water, in the first time of the experiments, the release appears to be systematically delayed when the matrix is crosslinked. For lidocaine hydrochloride based systems, as the amount of drug increases in the matrix, the high gap concentration between the matrix and the buffer solution promote the diffusion and a Fickian behavior is observed on the release curves. Depending on the chemical nature of the drug and its solubility, several interactions between the drug and the collagen matrix can be considered. A new drug delivery system containing caffeic acid as the anti-inflammatory and antioxydant molecule could be tested. This new system was able to release 95% of the drug in 5 h and the global release rate depends on the initial drug concentration in the device.


Journal of Macromolecular Science, Part A | 2010

Chain-extending of Hydroxytelechelic Polybutadiene: Synthesis and Characterization

Michael Lemoine; Claire-Hélène Brachais; Gilles Boni; Laurent Brachais; Jean-Pierre Couvercelle

Extension of hydroxytelechelic polybutadiene oligomers ( 3200 g/mol) is performed in mild conditions, in order to avoid backbone modifications, using succinic anhydride or methylenedicyclohexyl diisocyanate. The two routes present significative extension of the initial oligomers. Extension through the anhydride route, in the presence of DCC and DMAP, leads to new hydroxytelechelic oligomers ( 8000 g/mol). Extension through the diisocyanate route, catalyzed by DBTL at 65°C leads to hydroxytelechelic oligomers of higher average molecular weight ( 20000 g/mol). New materials are characterized by FTIR/1H-NMR and changes in their Tg according to , are discussed. The influence of reaction time on the length of the macromolecular chains is also studied.


RSC Advances | 2017

Synthesis and characterization of fluorophthalocyanines bearing four 2-(2-thienyl)ethoxy moieties: from the optimization of the fluorine substitution to chemosensing

Amélie Wannebroucq; Rita Meunier-Prest; Jean-Claude Chambron; Claire-Hélène Brachais; Jean-Moïse Suisse; Marcel Bouvet

The energy levels of the HOMO/LUMO Frontier orbitals and the electronic properties of phthalocyanine macrocycles can be tuned by the introduction of substituents. Starting from tetrafluorophthalonitrile, we studied the substitution of fluorine atoms by (2-thienyl)ethoxy moieties. An optimization of the experimental conditions (nature and stoichiometry of the alcohol and base, temperature) allowed us to obtain the monoalkoxy derivative with a very good yield. It was fully characterized using 19F and 1H NMR spectroscopies, thermal analysis and X-ray diffraction on single crystals. Then, the corresponding zinc phthalocyanine was synthesized, characterized by means of 19F and 1H NMR spectroscopies, thermal analysis, and also by electronic spectroscopy and electrospray mass spectrometry. The unsymmetrical zinc phthalocyanine bearing also four (2-thienyl)ethoxy moieties was prepared by the mixed condensation of the tetraalkoxyphthalonitrile with the tetrafluorophthalonitrile. The phthalocyanines were used to build an electronic device, a p-type Molecular Semiconductor – Doped Insulator heterojunction (MSDI), in combination with the lutetium bisphthalocyanine as a molecular semiconductor, and their chemosensing behavior towards ammonia was studied.


Journal of Macromolecular Science, Part A | 2017

New approach for synthesis of poly(ethylglyoxylate) using Maghnite-H+, an Algerian proton exchanged montmorillonite clay, as an eco-catalyst

Souad Bennabi; Nabahat Sahli; Mohammed Belbachir; Claire-Hélène Brachais; Gilles Boni; Jean-Pierre Couvercelle

ABSTRACT In this works, we have explored a new method for a green synthesis of poly(ethylglyoxylate) (PEtG). This method consists on using a montmorillonite clay called “Maghnite-H+” as an eco-catalyst to replace triethylamine which is toxic. Cationic polymerization experiments are performed in bulk conditions at three temperatures (−40°C, 25°C, 80°C) and in THF solutions at room temperature (25°C). At 25°C, an optimum ratio of 5 wt% of catalyst leads to molar masses up to 22000 g/mol in THF solutions. Polymerizations in bulk conditions lead to slightly lower masses than experiments conducted in THF solutions. However, bulk polymerization of ethyleglyoxylate remains a preferable method in order to avoid the use of a solvent and therefore to stay in the context of green chemistry. The structure of obtained polymers are characterized and confirmed by 1H and 13C NMR. Thermogravimetric Analysis (TGA) shows an enhanced thermal stability for end-capped PEtG compared to non-terminated PEtG. The best conversion rate (92%) is observed in bulk conditions at 25°C for a reaction time of 48h. An activation energy could be calculated from bulk experiments (Ea = 6.9 kJ/mol). An interesting advantage of Maghnite-H+ is an easy recoverage by a simple filtration from the polymer solution.


E-polymers | 2010

Aqueous chemical grafting of modified-PEG onto maghemite nanoparticles: Influence of grafting conditions

Claire-Hélène Brachais; Ling Hu; Diana Hach; Denis Chaumont; Aurélien Percheron; Jean-Pierre Couvercelle

Abstract The synthesis of maghemite nanoparticles coated with triethoxysilanemonomethylether- PEG (Si-mPEG), is presented in aqueous conditions, by the “grafting to” process. This procedure is performed in one step, starting from anchored polymer and native nanoparticles. The maghemite nanoparticles obtained were first identified by XRD and the average diameter is about 10 nm according to the Nitrogen adsorption, XRD and TEM techniques. The nature of the catalysts (acetic acid, triethylamine, NH4OH and dibutyl-tin-dilaurate) used for the establishment of the covalent bond between the γ-Fe2O3 particles and the SimPEG, as well as the influence of the temperature and the reaction time, were evaluated on the grafting rate of the particles in water by TGA and FTIR techniques. Using the size exclusion chromatography, SEC technique, we showed that the monomethoxy-PEG was resistant to mild acidic up to strong basic conditions. The best ratio “time/amount of polymer” for the highest grafting rate was the use of tinbased organometallic compound (DBTL) at 80 °C during 48 h. In these conditions, a grafting rate of 54 % is achieved.

Collaboration


Dive into the Claire-Hélène Brachais's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gilles Boni

University of Burgundy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ling Hu

University of Burgundy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana Hach

University of Burgundy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge