Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire I. Dixon is active.

Publication


Featured researches published by Claire I. Dixon.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Cocaine effects on mouse incentive-learning and human addiction are linked to α2 subunit-containing GABAA receptors

Claire I. Dixon; Hannah Morris; Gerome Breen; Sylvane Desrivières; Sarah Jugurnauth; Rebecca C. Steiner; Homero Vallada; Camila Guindalini; Ronaldo Laranjeira; Guilherme Peres Messas; Thomas W. Rosahl; John R. Atack; Dianne R. Peden; Delia Belelli; Jeremy J. Lambert; Sarah L. King; Gunter Schumann; David N. Stephens

Because GABAA receptors containing α2 subunits are highly represented in areas of the brain, such as nucleus accumbens (NAcc), frontal cortex, and amygdala, regions intimately involved in signaling motivation and reward, we hypothesized that manipulations of this receptor subtype would influence processing of rewards. Voltage-clamp recordings from NAcc medium spiny neurons of mice with α2 gene deletion showed reduced synaptic GABAA receptor-mediated responses. Behaviorally, the deletion abolished cocaine’s ability to potentiate behaviors conditioned to rewards (conditioned reinforcement), and to support behavioral sensitization. In mice with a point mutation in the benzodiazepine binding pocket of α2-GABAA receptors (α2H101R), GABAergic neurotransmission in medium spiny neurons was identical to that of WT (i.e., the mutation was silent), but importantly, receptor function was now facilitated by the atypical benzodiazepine Ro 15-4513 (ethyl 8-amido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5-a] [1,4] benzodiazepine-3-carboxylate). In α2H101R, but not WT mice, Ro 15-4513 administered directly into the NAcc-stimulated locomotor activity, and when given systemically and repeatedly, induced behavioral sensitization. These data indicate that activation of α2−GABAA receptors (most likely in NAcc) is both necessary and sufficient for behavioral sensitization. Consistent with a role of these receptors in addiction, we found specific markers and haplotypes of the GABRA2 gene to be associated with human cocaine addiction.


Pharmacology, Biochemistry and Behavior | 2008

Targeted deletion of the GABRA2 gene encoding α2-subunits of GABAA receptors facilitates performance of a conditioned emotional response, and abolishes anxiolytic effects of benzodiazepines and barbiturates

Claire I. Dixon; Thomas W. Rosahl; David N. Stephens

Mice with point-mutated alpha2 GABA(A) receptor subunits (rendering them diazepam insensitive) are resistant to the anxiolytic-like effects of benzodiazepines (BZs) in the conditioned emotional response (CER) test, but show normal anxiolytic effects of a barbiturate. We investigated the consequence of deleting the alpha2-subunit on acquisition of the CER with increasing intensity of footshock, and on the anxiolytic efficacy of a benzodiazepine, diazepam, and a barbiturate, pentobarbital. alpha2 knockout (KO) and wildtype (WT) mice were trained in a conditioned emotional response (CER) task, in which lever pressing for food on a variable interval (VI) schedule was suppressed during the presentation of a compound light/tone conditioned stimulus (CS+) that predicted footshock. The ability of diazepam and of pentobarbital to reduce suppression during the CS+ was interpreted as an anxiolytic response. There were no differences between the genotypes in shock sensitivity, as assessed by their flinch responses to increasing levels of shock. However, alpha2 KO mice showed a greater suppression of lever pressing than WT littermates in the presence of a compound cue signalling footshock. Diazepam (0, 0.5, 1 and 2 mg/kg) induced a dose-dependent anxiolytic-like effect in WT mice but no such effect was seen in KO mice. Similarly, although pentobarbital (20 mg/kg) reduced the ability of the CS+ to reduce lever pressing rates in WT mice, this effect was not seen in the KO. These findings suggest that alpha2-containing GABA(A) receptors mediate the anxiolytic effects of barbiturates, as well as benzodiazepines, and that they may be involved in neuronal circuits underlying conditioned anxiety.


The Journal of Neuroscience | 2014

Tonic Inhibition of Accumbal Spiny Neurons by Extrasynaptic α4βδ GABAA Receptors Modulates the Actions of Psychostimulants

Edward P. Maguire; Tom Macpherson; Jerome D. Swinny; Claire I. Dixon; Murray B. Herd; Delia Belelli; David N. Stephens; Sarah L. King; Jeremy J. Lambert

Within the nucleus accumbens (NAc), synaptic GABAA receptors (GABAARs) mediate phasic inhibition of medium spiny neurons (MSNs) and influence behavioral responses to cocaine. We demonstrate that both dopamine D1- and D2-receptor-expressing MSNs (D-MSNs) additionally harbor extrasynaptic GABAARs incorporating α4, β, and δ subunits that mediate tonic inhibition, thereby influencing neuronal excitability. Both the selective δ-GABAAR agonist THIP and DS2, a selective positive allosteric modulator, greatly increased the tonic current of all MSNs from wild-type (WT), but not from δ−/− or α4−/− mice. Coupling dopamine and tonic inhibition, the acute activation of D1 receptors (by a selective agonist or indirectly by amphetamine) greatly enhanced tonic inhibition in D1-MSNs but not D2-MSNs. In contrast, prolonged D2 receptor activation modestly reduced the tonic conductance of D2-MSNs. Behaviorally, WT and constitutive α4−/− mice did not differ in their expression of cocaine-conditioned place preference (CPP). Importantly, however, mice with the α4 deletion specific to D1-expressing neurons (α4D1−/−) showed increased CPP. Furthermore, THIP administered systemically or directly into the NAc of WT, but not α4−/− or α4D1−/− mice, blocked cocaine enhancement of CPP. In comparison, α4D2−/− mice exhibited normal CPP, but no cocaine enhancement. In conclusion, dopamine modulation of GABAergic tonic inhibition of D1- and D2-MSNs provides an intrinsic mechanism to differentially affect their excitability in response to psychostimulants and thereby influence their ability to potentiate conditioned reward. Therefore, α4βδ GABAARs may represent a viable target for the development of novel therapeutics to better understand and influence addictive behaviors.


Nature Communications | 2013

Mutations in the Gabrb1 gene promote alcohol consumption through increased tonic inhibition

Quentin M. Anstee; Susanne Knapp; Edward P. Maguire; Alastair M. Hosie; Philip J. Thomas; Martin Mortensen; Rohan Bhome; Alonso Martinez; Sophie E. Walker; Claire I. Dixon; Kush Ruparelia; Sara Montagnese; Yu-Ting Kuo; Amy H. Herlihy; Jimmy D. Bell; Iain Robinson; Irene Guerrini; Andrew McQuillin; Elizabeth M. C. Fisher; Mark A. Ungless; Hugh Gurling; Marsha Y. Morgan; Steve D.M. Brown; David N. Stephens; Delia Belelli; Jeremy J. Lambert; Trevor G. Smart; Howard C. Thomas

Alcohol-dependence is a common, complex and debilitating disorder with genetic and environmental influences. Here we show that alcohol consumption increases following mutations to the γ-aminobutyric acidA receptor (GABAAR) β1 subunit gene (Gabrb1). Using N-ethyl-N-nitrosourea mutagenesis on an alcohol-averse background (F1 BALB/cAnN × C3H/HeH), we develop a mouse model exhibiting strong heritable preference for ethanol resulting from a dominant mutation (L285R) in Gabrb1. The mutation causes spontaneous GABA ion channel opening and increases GABA sensitivity of recombinant GABAARs, coupled to increased tonic currents in the nucleus accumbens, a region long-associated with alcohol reward. Mutant mice work harder to obtain ethanol, and are more sensitive to alcohol intoxication. Another spontaneous mutation (P228H) in Gabrb1 also causes high ethanol consumption accompanied by spontaneous GABA ion channel opening and increased accumbal tonic current. Our results provide a new and important link between GABAAR function and increased alcohol consumption that could underlie some forms of alcohol abuse.


Behavioral Neuroscience | 2006

AMPA receptor GluR2, but not GluR1, subunit deletion impairs emotional response conditioning in mice.

Andy N. Mead; Hannah Morris; Claire I. Dixon; Stuart L. Rulten; L V Mayne; D Zamanillo; David N. Stephens

Deletions of gria1 or gria2 genes encoding alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic-acid-receptor subunits differ in their effects on appetitive conditioning. The authors investigated whether similar differences would occur in an aversive conditioning test. The ability of a discrete stimulus paired with footshock to subsequently inhibit food-maintained operant responding (conditioned emotional response) was examined in mice with deletions of gria1 or gria2 genes. Whereas gria1 knockout (KO) mice performed normally compared with wild-type (WT) controls, gria2 KO mice displayed no reduction in response rates when the shock-paired stimulus was presented. Nevertheless, gria2 KOs displayed evidence of freezing in a footshock-paired context, indicating that aversive learning could occur. In addition, gria1 KO mice showed some evidence of increased anxiety, and gria2 KOs showed reduced anxiety, in the elevated plus-maze.


PLOS ONE | 2012

Deletion of the gabra2 gene results in hypersensitivity to the acute effects of ethanol but does not alter ethanol self administration.

Claire I. Dixon; Sophie E. Walker; Sarah L. King; David N. Stephens

Human genetic studies have suggested that polymorphisms of the GABRA2 gene encoding the GABAA α2-subunit are associated with ethanol dependence. Variations in this gene also convey sensitivity to the subjective effects of ethanol, indicating a role in mediating ethanol-related behaviours. We therefore investigated the consequences of deleting the α2-subunit on the ataxic and rewarding properties of ethanol in mice. Ataxic and sedative effects of ethanol were explored in GABAA α2-subunit wildtype (WT) and knockout (KO) mice using a Rotarod apparatus, wire hang and the duration of loss of righting reflex. Following training, KO mice showed shorter latencies to fall than WT littermates under ethanol (2 g/kg i.p.) in both Rotarod and wire hang tests. After administration of ethanol (3.5 g/kg i.p.), KO mice took longer to regain the righting reflex than WT mice. To ensure the acute effects are not due to the gabra2 deletion affecting pharmacokinetics, blood ethanol concentrations were measured at 20 minute intervals after acute administration (2 g/kg i.p.), and did not differ between genotypes. To investigate ethanol’s rewarding properties, WT and KO mice were trained to lever press to receive increasing concentrations of ethanol on an FR4 schedule of reinforcement. Both WT and KO mice self-administered ethanol at similar rates, with no differences in the numbers of reinforcers earned. These data indicate a protective role for α2-subunits, against the acute sedative and ataxic effects of ethanol. However, no change was observed in ethanol self administration, suggesting the rewarding effects of ethanol remain unchanged.


Behavioural Pharmacology | 2011

Per1(Brdm1) mice self-administer cocaine and reinstate cocaine-seeking behaviour following extinction.

Briac Halbout; Stéphanie Perreau-Lenz; Claire I. Dixon; David N. Stephens; Rainer Spanagel

A clear interrelationship between biological rhythms and addiction has emerged from recent preclinical and clinical studies. In particular, the manipulation of the so-called ‘clock genes’ interferes with the manifestation of drug-related responses. For instance, Period 1 (Per1Brdm1) mutant mice do not display behavioural sensitization in response to repeated cocaine administration and do not express cocaine conditioned place preference, in contrast to control littermates. To assess the involvement of the mPer1 gene in a robust model of cocaine reinforcement and relapse-like behaviour, we tested Per1Brdm1 mutant mice and their littermates for self-administration of several doses (0.06–0.75 mg/kg/infusion) of cocaine, and for reinstatement of an extinguished cocaine-seeking response. Per1Brdm1 mutant mice did not differ from control littermates in their propensity to self-administer cocaine or to reinstate an extinguished cocaine-seeking behaviour in response to drug-associated cues or cocaine priming. In contrast to our earlier data on Per1Brdm1 mutant mice in cocaine sensitization and conditioned place preference, this finding does not suggest a relationship between the circadian clock gene mPer1 in cocaine self-administration and reinstatement of cocaine-seeking behaviour. This study adds one further example to the notion that various behavioural tests usually used in addiction research rely on different neurobiological substrates.


Appetite | 2009

α1- and α2-containing GABAA receptor modulation is not necessary for benzodiazepine-induced hyperphagia

Hannah Morris; S. Nilsson; Claire I. Dixon; Dai Stephens; Peter G. Clifton

Benzodiazepines increase food intake, an effect attributed to their ability to enhance palatability. We investigated which GABA(A) receptor subtypes may be involved in mediating benzodiazepine-induced hyperphagia. The role of the alpha2 subtype was investigated by observing the effects of midazolam, on the behavioural satiety sequence in mice with targeted deletion of the alpha2 gene (alpha2 knockout). Midazolam (0.125, 0.25 and 0.5mg/kg) increased food intake and the amount of time spent feeding in alpha2 knockout mice, suggesting that BZ-induced hyperphagia does not involve alpha2-containing GABA(A) receptors. We further investigated the roles of alpha1- and alpha3-containing GABA(A) receptors in mediating BZ-induced hyperphagia. We treated alpha2(H101R) mice, in which alpha2-containing receptors are rendered benzodiazepine insensitive, with L-838417, a compound which acts as a partial agonist at alpha2-, alpha3- and alpha5-receptors but is inactive at alpha1-containing receptors. L-838417 (10 and 30 mg/kg) increased food intake and the time spent feeding in both wildtype and alpha2(H101R) mice, demonstrating that benzodiazepine-induced hyperphagia does not require alpha1- and alpha2-containing GABA(A) receptors. These observations, together with evidence against the involvement of alpha5-containing GABA(A) receptors, suggest that alpha3-containing receptors mediate BZ-induced hyperphagia in the mouse.


Frontiers in Behavioral Neuroscience | 2015

Motivational Effects of Methylphenidate are Associated with GABRA2 Variants Conferring Addiction Risk

Theodora Duka; Claire I. Dixon; Leanne Trick; Hans S. Crombag; Sarah L. King; David N. Stephens

Background: Variations in the GABRA2 gene, encoding α2 subunits of GABAA receptors, have been associated with risk for addiction to several drugs, but the mechanisms by which variations in non-coding regions of GABRA2 increase risk for addictions are not understood. Mice with deletion of GABRA2 show deficits in the ability of psychostimulants to facilitate responding for conditioned reinforcers, offering a potential explanation. Methods: We report human and mouse studies investigating a potential endophenotype underlying this association. Healthy human volunteers carrying either cocaine-addiction “risk” or “protective” GABRA2 single nucleotide polymorphism (SNPs) were tested for their subjective responses to methylphenidate, and methylphenidate’s ability to facilitate conditioned reinforcement (CRf) for visual stimuli (CS+) associated with monetary reward. In parallel, methylphenidate’s ability to facilitate responding for a visual CRf was studied in wildtype and α2 knockout (α2−/−) mice. Results: Methylphenidate increased the number of CS+ presentations obtained by human subjects carrying protective, but not risk SNPs. In mice, methylphenidate increased responding for a CS+ in wildtype, but not α2−/− mice. Human subjects carrying protective SNPs felt stimulated, aroused and restless following methylphenidate, while individuals carrying risk SNPs did not. Conclusion: Human risk SNP carriers were insensitive to methylphenidate’s effects on mood or in facilitating CRf. That mice with the gene deletion were also insensitive to methylphenidate’s ability to increase responding for CRf, suggests a potential mechanism whereby low α2-subunit levels increase risk for addictions. Circuits employing GABAA-α2 subunit-containing receptors may protect against risk for addictions.


bioRxiv | 2016

α4-containing GABAA receptors on dopamine D2 receptor-expressing neurons mediate instrumental responding for conditioned reinforcers, and its potentiation by cocaine

Tom Macpherson; Claire I. Dixon; Patricia H. Janak; Delia Belelli; Jeremy J. Lambert; David N. Stephens; Sarah L. King

Extrasynaptic GABAA receptors (GABAARs) composed of α4, β and δ subunits mediate GABAergic tonic inhibition and are pertinent molecular targets in the modulation of behavioural responses to drugs of abuse, including ethanol and cocaine. These GABAARs are highly expressed within the nucleus accumbens (NAc) where they influence the excitability of the medium spiny neurons (MSNs). Here we explore their role in modulating behavioural responses to reward-conditioned cues and the behaviour-potentiating effects of cocaine. α4-subunit constitutive knockout mice (α4-/-) showed higher rates of instrumental responding for reward-paired stimuli in a test of conditioned reinforcement (CRf). A similar effect was seen following viral knockdown of GABAAR α4 subunits within the NAc. Local infusion of the δ-GABAAR-preferring agonist, THIP, into the NAc had no effect on responding when given alone, but reduced cocaine potentiation of responding for conditioned reinforcers in wildtype but not α4-/- mice. Finally, specific deletion of α4-subunits from dopamine D2-, but not D1-receptor-expressing neurons, mimicked the phenotype of the constitutive knockout, potentiating CRf responding and blocking intra-accumbal THIP attenuation of cocaine-potentiated CRf responding. These data demonstrate that α4-GABAAR mediated inhibition of dopamine D2 receptor-expressing neurons reduces instrumental-responding for a conditioned reinforcer, and its potentiation by cocaine, and emphasise the potential importance of GABAergic signalling within the NAc in mediating cocaine’s effects.

Collaboration


Dive into the Claire I. Dixon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge