Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire J. Parker Siburt is active.

Publication


Featured researches published by Claire J. Parker Siburt.


Metallomics | 2009

Hijacking transferrin bound iron: protein–receptor interactions involved in iron transport in N. gonorrhoeae

Claire J. Parker Siburt; Petra L. Roulhac; Katherine D. Weaver; Jennifer M. Noto; Timothy A. Mietzner; Cynthia Nau Cornelissen; Michael C. Fitzgerald; Alvin L. Crumbliss

Neisseria gonorrhoeae has the capacity to acquire iron from its human host by removing this essential nutrient from serum transferrin. The transferrin binding proteins, TbpA and TbpB constitute the outer membrane receptor complex responsible for binding transferrin, extracting the tightly bound iron from the host-derived molecule, and transporting iron into the periplasmic space of this Gram-negative bacterium. Once iron is transported across the outer membrane, ferric binding protein A (FbpA) moves the iron across the periplasmic space and initiates the process of transport into the bacterial cytosol. The results of the studies reported here define the multiple steps in the iron transport process in which TbpA and TbpB participate. Using the SUPREX technique for assessing the thermodynamic stability of protein-ligand complexes, we report herein the first direct measurement of periplasmic FbpA binding to the outer membrane protein TbpA. We also show that TbpA discriminates between apo- and holo-FbpA; i.e. the TbpA interaction with apo-FbpA is higher affinity than the TbpA interaction with holo-FbpA. Further, we demonstrate that both TbpA and TbpB individually can deferrate transferrin and ferrate FbpA without energy supplied from TonB resulting in sequestration by apo-FbpA.


Biochimica et Biophysica Acta | 2012

FbpA--a bacterial transferrin with more to offer.

Claire J. Parker Siburt; Timothy A Mietzner; Alvin L. Crumbliss

BACKGROUND Gram negative bacteria require iron for growth and virulence. It has been shown that certain pathogenic bacteria such as Neisseria gonorrhoeae possess a periplasmic protein called ferric binding protein (FbpA), which is a node in the transport of iron from the cell exterior to the cytosol. SCOPE OF REVIEW The relevant literature is reviewed which establishes the molecular mechanism of FbpA mediated iron transport across the periplasm to the inner membrane. MAJOR CONCLUSIONS Here we establish that FbpA may be considered a bacterial transferrin on structural and functional grounds. Data are presented which suggest a continuum whereby FbpA may be considered as a naked iron carrier, as well as a Fe-chelate carrier, and finally a member of the larger family of periplasmic binding proteins. GENERAL SIGNIFICANCE An investigation of the molecular mechanisms of action of FbpA as a member of the transferrin super family enhances our understanding of bacterial mechanisms for acquisition of the essential nutrient iron, as well as the modes of action of human transferrin, and may provide approaches to the control of pathogenic diseases. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.


Free Radical Biology and Medicine | 2012

Haptoglobin alters oxygenation and oxidation of hemoglobin and decreases propagation of peroxide-induced oxidative reactions.

Sambuddha Banerjee; Yiping Jia; Claire J. Parker Siburt; Bindu Abraham; Francine Wood; Celia Bonaventura; Robert W. Henkens; Alvin L. Crumbliss; Abdu I. Alayash

We compared oxygenation and anaerobic oxidation reactions of a purified complex of human hemoglobin (Hb) and haptoglobin (Hb-Hp) to those of uncomplexed Hb. Under equilibrium conditions, Hb-Hp exhibited active-site heterogeneity and noncooperative, high-affinity O(2) binding (n(1/2)=0.88, P(1/2)=0.33 mm Hg in inorganic phosphate buffer at pH 7 and 25 °C). Rapid-reaction kinetics also exhibited active-site heterogeneity, with a slower process of O(2) dissociation and a faster process of CO binding relative to uncomplexed Hb. Deoxygenated Hb-Hp had significantly reduced absorption at the λ(max) of 430 nm relative to uncomplexed Hb, as occurs for isolated Hb subunits that lack T-state stabilization. Under comparable experimental conditions, the redox potential (E(1/2)) of Hb-Hp was found to be +54 mV, showing that it is much more easily oxidized than uncomplexed Hb (E(1/2)=+125 mV). The Nernst plots for Hb-Hp oxidation showed no cooperativity and slopes less than unity indicated active-site heterogeneity. The redox potential of Hb-Hp was unchanged by pH over the range of 6.4-8.3. Exposure of Hb-Hp to excess hydrogen peroxide (H(2)O(2)) produced ferryl heme, which was found to be more kinetically inert in the Hb-Hp complex than in uncomplexed Hb. The negative shift in the redox potential of Hb-Hp and its stabilized ferryl state may be central elements in the protection against Hb-induced oxidative damage afforded by formation of the Hb-Hp complex.


Journal of Biological Chemistry | 2013

α-Hemoglobin Stabilizing Protein (AHSP) Markedly Decreases the Redox Potential and Reactivity of α-Subunits of Human HbA with Hydrogen Peroxide

Todd L. Mollan; Sambuddha Banerjee; Gang Wu; Claire J. Parker Siburt; Ah Lim Tsai; John S. Olson; Mitchell J. Weiss; Alvin L. Crumbliss; Abdu I. Alayash

Background: α-Hemoglobin stabilizing protein (AHSP) modifies the redox properties of bound α-subunits. Results: Isolated hemoglobin subunits exhibit significantly different redox properties compared with HbA. A significant decrease in the reduction potential of α-subunits bound to AHSP results in preferential binding of ferric α. Conclusion: AHSP·α-subunit complexes do not participate in ferric-ferryl heme redox cycling. Significance: AHSP binding to α-subunits inhibits subunit pseudoperoxidase activity. α-Hemoglobin stabilizing protein (AHSP) is a molecular chaperone that binds monomeric α-subunits of human hemoglobin A (HbA) and modulates heme iron oxidation and subunit folding states. Although AHSP·αHb complexes autoxidize more rapidly than HbA, the redox mechanisms appear to be similar. Both metHbA and isolated met-β-subunits undergo further oxidation in the presence of hydrogen peroxide (H2O2) to form ferryl heme species. Surprisingly, much lower levels of H2O2-induced ferryl heme are produced by free met-α-subunits as compared with met-β-subunits, and no ferryl heme is detected in H2O2-treated AHSP·met-α-complex at pH values from 5.0 to 9.0 at 23 °C. Ferryl heme species were similarly not detected in AHSP·met-α Pro-30 mutants known to exhibit different rates of autoxidation and hemin loss. EPR data suggest that protein-based radicals associated with the ferryl oxidation state exist within HbA α- and β-subunits. In contrast, treatment of free α-subunits with H2O2 yields much smaller radical signals, and no radicals are detected when H2O2 is added to AHSP·α-complexes. AHSP binding also dramatically reduces the redox potential of α-subunits, from +40 to −78 mV in 1 m glycine buffer, pH 6.0, at 8 °C, demonstrating independently that AHSP has a much higher affinity for Fe(III) versus Fe(II) α-subunits. Hexacoordination in the AHSP·met-α complex markedly decreases the rate of the initial H2O2 reaction with iron and thus provides α-subunits protection against damaging oxidative reactions.


Journal of Inorganic Biochemistry | 2010

Redox potentials of Ti(IV) and Fe(III) complexes provide insights into titanium biodistribution mechanisms

Claire J. Parker Siburt; Emily M. Lin; Sara J. Brandt; Arthur D. Tinoco; Ann M. Valentine; Alvin L. Crumbliss

Transferrin, the human iron transport protein, binds Ti(IV) even more tightly than it binds Fe(III). However, the fate of titanium bound to transferrin is not well understood. Here we present results which address the fate of titanium once bound to transferrin. We have determined the redox potentials for a series of Ti(IV) complexes and have used these data to develop a linear free energy relationship (LFER) correlating Ti(IV) <==> Ti(III) redox processes with Fe(III) <==> Fe(II) redox processes. This LFER enables us to compare the redox potentials of Fe(III) complexes and Ti(IV) complexes that mimic the active site of transferrin and allows us to predict the redox potential of titanium-transferrin. Using cyclic voltammetry and discontinuous metalloprotein spectroelectrochemistry (dSEC) in conjunction with the LFER, we report that the redox potential of titanium-transferrin is lower than -600 mV (lower than that of iron-transferrin) and is predicted to be ca. -900 mV vs. NHE (normal hydrogen electrode). We conclude that Ti(IV)/Ti(III) reduction in titanium-transferrin is not accessible by biological reducing agents. This observation is discussed in the context of current hypotheses concerning the role of reduction in transferrin mediated iron transport.


Metallomics | 2012

Evidence of Fe3+ interaction with the plug domain of the outer membrane transferrin receptor protein of Neisseria gonorrhoeae: implications for Fe transport.

Sambuddha Banerjee; Claire J. Parker Siburt; Shreni Mistry; Jennifer M. Noto; Patrick D. DeArmond; Michael C. Fitzgerald; Lisa A. Lambert; Cynthia Nau Cornelissen; Alvin L. Crumbliss

Neisseria gonorrhoeae is an obligate pathogen that hijacks iron from the human iron transport protein, holo-transferrin (Fe(2)-Tf), by expressing TonB-dependent outer membrane receptor proteins, TbpA and TbpB. Homologous to other TonB-dependent outer membrane transporters, TbpA is thought to consist of a β-barrel with an N-terminal plug domain. Previous reports by our laboratories show that the sequence EIEYE in the plug domain is highly conserved among various bacterial species that express TbpA and plays a crucial role in iron utilization for gonococci. We hypothesize that this highly conserved EIEYE sequence in the TbpA plug, rich in hard oxygen donor groups, binds with Fe(3+) through the transport process across the outer membrane through the β-barrel. Sequestration of Fe(3+) by the TbpA-plug supports the paradigm that the ferric iron must always remain chelated and controlled throughout the transport process. In order to test this hypothesis here we describe the ability of both the recombinant wild-type plug, and three small peptides that encompass the sequence EIEYE of the plug, to bind Fe(3+). This is the first report of the expression/isolation of the recombinant wild-type TbpA plug. Although CD and SUPREX spectroscopies suggest that a non-native structure is observed for the recombinant plug, fluorescence quenching titrations indicate that the wild-type recombinant TbpA plug binds Fe (3+) with a conditional log K(d) = 7 at pH 7.5, with no evidence of binding at pH 6.3. A recombinant TbpA plug with mutated sequence (NEIEYEN → NEIAAAN) shows no evidence of Fe(3+) binding under our experimental set up. Interestingly, in silico modeling with the wild-type plug also predicts a flexible loop structure for the EIEYE sequence under native conditions which once again supports the Fe(3+) binding hypothesis. These in vitro observations are consistent with the hypothesis that the EIEYE sequence in the wild-type TbpA plug binds Fe(3+) during the outer membrane transport process in vivo.


Biochemistry | 2014

Bordetella pertussis FbpA binds both unchelated iron and iron siderophore complexes

Sambuddha Banerjee; Aruna J. Weerasinghe; Claire J. Parker Siburt; R. Timothy Kreulen; Sandra K. Armstrong; Timothy J. Brickman; Lisa A. Lambert; Alvin L. Crumbliss

Bordetella pertussis is the causative agent of whooping cough. This pathogenic bacterium can obtain the essential nutrient iron using its native alcaligin siderophore and by utilizing xeno-siderophores such as desferrioxamine B, ferrichrome, and enterobactin. Previous genome-wide expression profiling identified an iron repressible B. pertussis gene encoding a periplasmic protein (FbpABp). A previously reported crystal structure shows significant similarity between FbpABp and previously characterized bacterial iron binding proteins, and established its iron-binding ability. Bordetella growth studies determined that FbpABp was required for utilization of not only unchelated iron, but also utilization of iron bound to both native and xeno-siderophores. In this in vitro solution study, we quantified the binding of unchelated ferric iron to FbpABp in the presence of various anions and importantly, we demonstrated that FbpABp binds all the ferric siderophores tested (native and xeno) with μM affinity. In silico modeling augmented solution data. FbpABp was incapable of iron removal from ferric xeno-siderophores in vitro. However, when FbpABp was reacted with native ferric-alcaligin, it elicited a pronounced change in the iron coordination environment, which may signify an early step in FbpABp-mediated iron removal from the native siderophore. To our knowledge, this is the first time the periplasmic component of an iron uptake system has been shown to bind iron directly as Fe3+ and indirectly as a ferric siderophore complex.


Biochemical Journal | 2017

Engineering oxidative stability in human hemoglobin based on the Hb providence (βK82D) mutation and genetic cross-linking

Michael Brad Strader; Rachel Bangle; Claire J. Parker Siburt; Cornelius L. Varnado; Jayashree Soman; Andres S. Benitez Cardenas; Premila P. Samuel; Eileen Singleton; Alvin L. Crumbliss; John S. Olson; Abdu I. Alayash

Previous work suggested that hemoglobin (Hb) tetramer formation slows autoxidation and hemin loss and that the naturally occurring mutant, Hb Providence (HbProv; βK82D), is much more resistant to degradation by H2O2 We have examined systematically the effects of genetic cross-linking of Hb tetramers with and without the HbProv mutation on autoxidation, hemin loss, and reactions with H2O2, using native HbA and various wild-type recombinant Hbs as controls. Genetically cross-linked Hb Presbyterian (βN108K) was also examined as an example of a low oxygen affinity tetramer. Our conclusions are: (a) at low concentrations, all the cross-linked tetramers show smaller rates of autoxidation and hemin loss than HbA, which can dissociate into much less stable dimers and (b) the HbProv βK82D mutation confers more resistance to degradation by H2O2, by markedly inhibiting oxidation of the β93 cysteine side chain, particularly in cross-linked tetramers and even in the presence of the destabilizing Hb Presbyterian mutation. These results show that cross-linking and the βK82D mutation do enhance the resistance of Hb to oxidative degradation, a critical element in the design of a safe and effective oxygen therapeutic.


Biochimica et Biophysica Acta | 2011

STERIC FACTORS MODERATE CONFORMATIONAL FLUIDITY AND CONTRIBUTE TO THE HIGH PROTON SENSITIVITY OF ROOT EFFECT HEMOGLOBINS

Celia Bonaventura; Robert W. Henkens; Joel M. Friedman; Claire J. Parker Siburt; Daniel Kraiter; Alvin L. Crumbliss

The structural basis of the extreme pH dependence of oxygen binding to Root effect Hbs is a long-standing puzzle in the field of protein chemistry. A previously unappreciated role of steric factors in the Root effect was revealed by a comparison of pH effects on oxygenation and oxidation processes in human Hb relative to Spot (Leiostomus xanthurus) and Carp (Cyprinodon carpio) Hbs. The Root effect confers five-fold increased pH sensitivity to oxygenation of Spot and Carp Hbs relative to Hb A(0) in the absence of anionic effectors, and even larger relative elevations of pH sensitivity of oxygenation in the presence of 0.2M phosphate. Remarkably, the Root effect was not evident in the oxidation of the Root effect Hbs. This finding rules out pH-dependent alterations in the thermodynamic properties of the heme iron, measured in the anaerobic oxidation reaction, as the basis of the Root effect. The alternative explanation supported by these results is that the elevated pH sensitivity of oxygenation of Root effect Hbs is attributable to globin-dependent steric effects that alter oxygen affinity by constraining conformational fluidity, but which have little influence on electron exchange via the heme edge. This elegant mode of allosteric control can regulate oxygen affinity within a given quaternary state, in addition to modifying the T-R equilibrium. Evolution of Hb sequences that result in proton-linked steric barriers to heme oxygenation could provide a general mechanism to account for the appearance of the Root effect in the structurally diverse Hbs of many species.


Journal of the American Chemical Society | 2013

Borate as a Synergistic Anion for Marinobacter algicola Ferric Binding Protein, FbpA: A Role for Boron in Iron Transport in Marine Life

Aruna J. Weerasinghe; Shady A. Amin; Thaer Othman; Ariel N. Romano; Claire J. Parker Siburt; Jerrell Tisnado; Lisa A. Lambert; Tom Huxford; Carl J. Carrano; Alvin L. Crumbliss

Collaboration


Dive into the Claire J. Parker Siburt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abdu I. Alayash

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge