Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire L. Donald is active.

Publication


Featured researches published by Claire L. Donald.


Journal of General Virology | 2013

Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells

Esther Schnettler; Claire L. Donald; Stacey Human; Mick Watson; Ricky W. C. Siu; Melanie McFarlane; John K. Fazakerley; Alain Kohl; Rennos Fragkoudis

The exogenous siRNA pathway is important in restricting arbovirus infection in mosquitoes. Less is known about the role of the PIWI-interacting RNA pathway, or piRNA pathway, in antiviral responses. Viral piRNA-like molecules have recently been described following infection of mosquitoes and derived cell lines with several arboviruses. The piRNA pathway has thus been suggested to function as an additional small RNA-mediated antiviral response to the known infection-induced siRNA response. Here we show that piRNA-like molecules are produced following infection with the naturally mosquito-borne Semliki Forest virus in mosquito cell lines. We show that knockdown of piRNA pathway proteins enhances the replication of this arbovirus and defines the contribution of piRNA pathway effectors, thus characterizing the antiviral properties of the piRNA pathway. In conclusion, arbovirus infection can trigger the piRNA pathway in mosquito cells, and knockdown of piRNA proteins enhances virus production.


PLOS Neglected Tropical Diseases | 2014

Characterization of Aedes aegypti innate-immune pathways that limit Chikungunya virus replication.

Melanie McFarlane; Camilo Arias-Goeta; Estelle Martin; Zoe O'Hara; Aleksei Lulla; Laurence Mousson; Stephanie M. Rainey; Suzana Misbah; Esther Schnettler; Claire L. Donald; Andres Merits; Alain Kohl; Anna-Bella Failloux

Replication of arboviruses in their arthropod vectors is controlled by innate immune responses. The RNA sequence-specific break down mechanism, RNA interference (RNAi), has been shown to be an important innate antiviral response in mosquitoes. In addition, immune signaling pathways have been reported to mediate arbovirus infections in mosquitoes; namely the JAK/STAT, immune deficiency (IMD) and Toll pathways. Very little is known about these pathways in response to chikungunya virus (CHIKV) infection, a mosquito-borne alphavirus (Togaviridae) transmitted by aedine species to humans resulting in a febrile and arthralgic disease. In this study, the contribution of several innate immune responses to control CHIKV replication was investigated. In vitro experiments identified the RNAi pathway as a key antiviral pathway. CHIKV was shown to repress the activity of the Toll signaling pathway in vitro but neither JAK/STAT, IMD nor Toll pathways were found to mediate antiviral activities. In vivo data further confirmed our in vitro identification of the vital role of RNAi in antiviral defence. Taken together these results indicate a complex interaction between CHIKV replication and mosquito innate immune responses and demonstrate similarities as well as differences in the control of alphaviruses and other arboviruses by mosquito immune pathways.


PLOS Neglected Tropical Diseases | 2016

Full Genome Sequence and sfRNA Interferon Antagonist Activity of Zika Virus from Recife, Brazil.

Claire L. Donald; Benjamin Brennan; Stephanie L. Cumberworth; Veronica V. Rezelj; Jordan J. Clark; Marli Tenório Cordeiro; Rafael F. O. Franca; Lindomar José Pena; Gavin S. Wilkie; Ana da Silva Filipe; Christopher Davis; Joseph Hughes; Margus Varjak; Martin Selinger; Luíza Zuvanov; Ania M. Owsianka; Arvind H. Patel; John McLauchlan; Brett D. Lindenbach; Gamou Fall; Amadou A. Sall; Roman Biek; Jan Rehwinkel; Esther Schnettler; Alain Kohl

Background The outbreak of Zika virus (ZIKV) in the Americas has transformed a previously obscure mosquito-transmitted arbovirus of the Flaviviridae family into a major public health concern. Little is currently known about the evolution and biology of ZIKV and the factors that contribute to the associated pathogenesis. Determining genomic sequences of clinical viral isolates and characterization of elements within these are an important prerequisite to advance our understanding of viral replicative processes and virus-host interactions. Methodology/Principal findings We obtained a ZIKV isolate from a patient who presented with classical ZIKV-associated symptoms, and used high throughput sequencing and other molecular biology approaches to determine its full genome sequence, including non-coding regions. Genome regions were characterized and compared to the sequences of other isolates where available. Furthermore, we identified a subgenomic flavivirus RNA (sfRNA) in ZIKV-infected cells that has antagonist activity against RIG-I induced type I interferon induction, with a lesser effect on MDA-5 mediated action. Conclusions/Significance The full-length genome sequence including non-coding regions of a South American ZIKV isolate from a patient with classical symptoms will support efforts to develop genetic tools for this virus. Detection of sfRNA that counteracts interferon responses is likely to be important for further understanding of pathogenesis and virus-host interactions.


Insects | 2012

New Insights into Control of Arbovirus Replication and Spread by Insect RNA Interference Pathways.

Claire L. Donald; Alain Kohl; Esther Schnettler

Arthropod-borne (arbo) viruses are transmitted by vectors, such as mosquitoes, to susceptible vertebrates. Recent research has shown that arbovirus replication and spread in mosquitoes is not passively tolerated but induces host responses to control these pathogens. Small RNA-mediated host responses are key players among these antiviral immune strategies. Studies into one such small RNA-mediated antiviral response, the exogenous RNA interference (RNAi) pathway, have generated a wealth of information on the functions of this mechanism and the enzymes which mediate antiviral activities. However, other small RNA-mediated host responses may also be involved in modulating antiviral activity. The aim of this review is to summarize recent research into the nature of small RNA-mediated antiviral responses in mosquitoes and to discuss future directions for this relatively new area of research.


Insects | 2015

Fighting Arbovirus Transmission: Natural and Engineered Control of Vector Competence in Aedes Mosquitoes.

Joy Kean; Stephanie M. Rainey; Melanie McFarlane; Claire L. Donald; Esther Schnettler; Alain Kohl; Emilie Pondeville

Control of aedine mosquito vectors, either by mosquito population reduction or replacement with refractory mosquitoes, may play an essential role in the fight against arboviral diseases. In this review, we will focus on the development and application of biological approaches, both natural or engineered, to limit mosquito vector competence for arboviruses. The study of mosquito antiviral immunity has led to the identification of a number of host response mechanisms and proteins that are required to control arbovirus replication in mosquitoes, though more factors influencing vector competence are likely to be discovered. We will discuss key aspects of these pathways as targets either for selection of naturally resistant mosquito populations or for mosquito genetic manipulation. Moreover, we will consider the use of endosymbiotic bacteria such as Wolbachia, which in some cases have proven to be remarkably efficient in disrupting arbovirus transmission by mosquitoes, but also the use of naturally occurring insect-specific viruses that may interfere with arboviruses in mosquito vectors. Finally, we will discuss the use of paratransgenesis as well as entomopathogenic fungi, which are also proposed strategies to control vector competence.


mSphere | 2017

Aedes aegypti Piwi4 is a noncanonical PIWI protein involved in antiviral responses

Margus Varjak; Kevin Maringer; Mick Watson; Vattipally B. Sreenu; Anthony C. Fredericks; Emilie Pondeville; Claire L. Donald; Jelle Sterk; Joy Kean; Marie Vazeille; Anna-Bella Failloux; Alain Kohl; Esther Schnettler

Mosquitoes transmit several pathogenic viruses, for example, the chikungunya and Zika viruses. In mosquito cells, virus replication intermediates in the form of double-stranded RNA are cleaved by Dcr2 into 21-nucleotide-long siRNAs, which in turn are used by Ago2 to target the virus genome. A different class of virus-derived small RNAs, PIWI-interacting RNAs (piRNAs), have also been found in infected insect cells. These piRNAs are longer and are produced in a Dcr2-independent manner. The only known antiviral protein in the PIWI family is Piwi4, which is not involved in piRNA production. It is associated with key proteins of the siRNA and piRNA pathways, although its antiviral function is independent of their actions. ABSTRACT The small interfering RNA (siRNA) pathway is a major antiviral response in mosquitoes; however, another RNA interference pathway, the PIWI-interacting RNA (piRNA) pathway, has been suggested to be antiviral in mosquitoes. Piwi4 has been reported to be a key mediator of this response in mosquitoes, but it is not involved in the production of virus-specific piRNAs. Here, we show that Piwi4 associates with members of the antiviral exogenous siRNA pathway (Ago2 and Dcr2), as well as with proteins of the piRNA pathway (Ago3, Piwi5, and Piwi6) in an Aedes aegypti-derived cell line, Aag2. Analysis of small RNAs captured by Piwi4 revealed that it is predominantly associated with virus-specific siRNAs in Semliki Forest virus-infected cells and, to a lesser extent, with viral piRNAs. By using a Dcr2 knockout cell line, we showed directly that Ago2 lost its antiviral activity, as it was no longer bound to siRNAs, but Piwi4 retained its antiviral activity in the absence of the siRNA pathway. These results demonstrate a complex interaction between the siRNA and piRNA pathways in A. aegypti and identify Piwi4 as a noncanonical PIWI protein that interacts with members of the siRNA and piRNA pathways, and its antiviral activities may be independent of either pathway. IMPORTANCE Mosquitoes transmit several pathogenic viruses, for example, the chikungunya and Zika viruses. In mosquito cells, virus replication intermediates in the form of double-stranded RNA are cleaved by Dcr2 into 21-nucleotide-long siRNAs, which in turn are used by Ago2 to target the virus genome. A different class of virus-derived small RNAs, PIWI-interacting RNAs (piRNAs), have also been found in infected insect cells. These piRNAs are longer and are produced in a Dcr2-independent manner. The only known antiviral protein in the PIWI family is Piwi4, which is not involved in piRNA production. It is associated with key proteins of the siRNA and piRNA pathways, although its antiviral function is independent of their actions.


Cellular Microbiology | 2017

Inhibition of type I interferon induction and signalling by mosquito-borne flaviviruses

Stephanie L. Cumberworth; Jordan J. Clark; Alain Kohl; Claire L. Donald

The Flavivirus genus (Flaviviridae family) contains a number of important human pathogens, including dengue and Zika viruses, which have the potential to cause severe disease. In order to efficiently establish a productive infection in mammalian cells, flaviviruses have developed key strategies to counteract host immune defences, including the type I interferon response. They employ different mechanisms to control interferon signal transduction and effector pathways, and key research generated over the past couple of decades has uncovered new insights into their abilities to actively decrease interferon antiviral activity. Given the lack of antivirals or prophylactic treatments for many flaviviral infections, it is important to fully understand how these viruses affect cellular processes to influence pathogenesis and disease outcome. This review will discuss the strategies mosquito‐borne flaviviruses have evolved to antagonise type I interferon mediated immune responses.


PLOS Neglected Tropical Diseases | 2017

Characterization of the Zika virus induced small RNA response in Aedes aegypti cells

Margus Varjak; Claire L. Donald; Timothy J. Mottram; Vattipally B. Sreenu; Andres Merits; Kevin Maringer; Esther Schnettler; Alain Kohl

RNA interference (RNAi) controls arbovirus infections in mosquitoes. Two different RNAi pathways are involved in antiviral responses: the PIWI-interacting RNA (piRNA) and exogenous short interfering RNA (exo-siRNA) pathways, which are characterized by the production of virus-derived small RNAs of 25–29 and 21 nucleotides, respectively. The exo-siRNA pathway is considered to be the key mosquito antiviral response mechanism. In Aedes aegypti-derived cells, Zika virus (ZIKV)-specific siRNAs were produced and loaded into the exo-siRNA pathway effector protein Argonaute 2 (Ago2); although the knockdown of Ago2 did not enhance virus replication. Enhanced ZIKV replication was observed in a Dcr2-knockout cell line suggesting that the exo-siRNA pathway is implicated in the antiviral response. Although ZIKV-specific piRNA-sized small RNAs were detected, these lacked the characteristic piRNA ping-pong signature motif and were bound to Ago3 but not Piwi5 or Piwi6. Silencing of PIWI proteins indicated that the knockdown of Ago3, Piwi5 or Piwi6 did not enhance ZIKV replication and only Piwi4 displayed antiviral activity. We also report that the expression of ZIKV capsid (C) protein amplified the replication of a reporter alphavirus; although, unlike yellow fever virus C protein, it does not inhibit the exo-siRNA pathway. Our findings elucidate ZIKV-mosquito RNAi interactions that are important for understanding its spread.


European Journal of Immunology | 2018

Infection with a Brazilian isolate of Zika virus generates RIG‐I stimulatory RNA and the viral NS5 protein blocks type I IFN induction and signalling

Jonny Hertzog; Antonio Gregorio Dias Junior; Rachel E. Rigby; Claire L. Donald; Alice Mayer; Erdinc Sezgin; Chaojun Song; Boquan Jin; Philip Hublitz; Christian Eggeling; Alain Kohl; Jan Rehwinkel

Zika virus (ZIKV) is a major public health concern in the Americas. We report that ZIKV infection and RNA extracted from ZIKV infected cells potently activated the induction of type I interferons (IFNs). This effect was fully dependent on the mitochondrial antiviral signaling protein (MAVS), implicating RIG‐I‐like receptors (RLRs) as upstream sensors of viral RNA. Indeed, RIG‐I and the related RNA sensor MDA5 contributed to type I IFN induction in response to RNA from infected cells. We found that ZIKV NS5 from a recent Brazilian isolate blocked type I IFN induction downstream of RLRs and also inhibited type I IFN receptor (IFNAR) signaling. We defined the ZIKV NS5 nuclear localization signal and report that NS5 nuclear localization was not required for inhibition of signaling downstream of IFNAR. Mechanistically, NS5 blocked IFNAR signaling by both leading to reduced levels of STAT2 and by blocking phosphorylation of STAT1, two transcription factors activated by type I IFNs. Taken together, our observations suggest that ZIKV infection induces a type I IFN response via RLRs and that ZIKV interferes with this response by blocking signaling downstream of RLRs and IFNAR.


Veterinary Journal | 2017

Differential effects of lipid biosynthesis inhibitors on Zika and Semliki Forest viruses

Jamie Royle; Claire L. Donald; Andres Merits; Alain Kohl; Margus Varjak

The recent outbreak of infection with Zika virus (ZIKV; Flaviviridae) has attracted attention to this previously neglected mosquito-borne pathogen and the need for efficient therapies. Since flavivirus replication is generally known to be dependent on fatty acid biosynthesis, two inhibitors of this pathway, 5-(tetradecyloxyl)-2-furoic acid (TOFA) and cerulenin, were tested for their potentiality to inhibit virus replication. At concentrations previously shown to inhibit the replication of other flaviviruses, neither drug had a significant antiviral affect against ZIKV, but reduced the replication of the non-related mosquito-borne Semliki Forest virus (Togaviridae).

Collaboration


Dive into the Claire L. Donald's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John K. Fazakerley

Institute for Animal Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge