Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire L. Dubois is active.

Publication


Featured researches published by Claire L. Dubois.


Development | 2011

Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas.

Janel L. Kopp; Claire L. Dubois; Ashleigh E. Schaffer; Ergeng Hao; Hung Ping Shih; Philip A. Seymour; Jenny Ma; Maike Sander

One major unresolved question in the field of pancreas biology is whether ductal cells have the ability to generate insulin-producing β-cells. Conclusive examination of this question has been limited by the lack of appropriate tools to efficiently and specifically label ductal cells in vivo. We generated Sox9CreERT2 mice, which, during adulthood, allow for labeling of an average of 70% of pancreatic ductal cells, including terminal duct/centroacinar cells. Fate-mapping studies of the Sox9+ domain revealed endocrine and acinar cell neogenesis from Sox9+ cells throughout embryogenesis. Very small numbers of non-β endocrine cells continue to arise from Sox9+ cells in early postnatal life, but no endocrine or acinar cell neogenesis from Sox9+ cells occurs during adulthood. In the adult pancreas, pancreatic injury by partial duct ligation (PDL) has been suggested to induce β-cell regeneration from a transient Ngn3+ endocrine progenitor cell population. Here, we identify ductal cells as a cell of origin for PDL-induced Ngn3+ cells, but fail to observe β-cell neogenesis from duct-derived cells. Therefore, although PDL leads to activation of Ngn3 expression in ducts, PDL does not induce appropriate cues to allow for completion of the entire β-cell neogenesis program. In conclusion, although endocrine cells arise from the Sox9+ ductal domain throughout embryogenesis and the early postnatal period, Sox9+ ductal cells of the adult pancreas no longer give rise to endocrine cells under both normal conditions and in response to PDL.


Cancer Cell | 2012

Identification of Sox9-Dependent Acinar-to-Ductal Reprogramming as the Principal Mechanism for Initiation of Pancreatic Ductal Adenocarcinoma

Janel L. Kopp; Guido von Figura; Erin Mayes; Fenfen Liu; Claire L. Dubois; John P. Morris; Fong Cheng Pan; Haruhiko Akiyama; Christopher V.E. Wright; Kristin C. Jensen; Matthias Hebrok; Maike Sander

Tumors are largely classified by histologic appearance, yet morphologic features do not necessarily predict cellular origin. To determine the origin of pancreatic ductal adenocarcinoma (PDA), we labeled and traced pancreatic cell populations after induction of a PDA-initiating Kras mutation. Our studies reveal that ductal and stem-like centroacinar cells are surprisingly refractory to oncogenic transformation, whereas acinar cells readily form PDA precursor lesions with ductal features. We show that formation of acinar-derived premalignant lesions depends on ectopic induction of the ductal gene Sox9. Moreover, when concomitantly expressed with oncogenic Kras, Sox9 accelerates formation of premalignant lesions. These results provide insight into the cellular origin of PDA and suggest that its precursors arise via induction of a duct-like state in acinar cells.


Development | 2012

A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation

Hung Ping Shih; Janel L. Kopp; Manbir Sandhu; Claire L. Dubois; Philip A. Seymour; Anne Grapin-Botton; Maike Sander

In the pancreas, Notch signaling is thought to prevent cell differentiation, thereby maintaining progenitors in an undifferentiated state. Here, we show that Notch renders progenitors competent to differentiate into ductal and endocrine cells by inducing activators of cell differentiation. Notch signaling promotes the expression of Sox9, which cell-autonomously activates the pro-endocrine gene Ngn3. However, at high Notch activity endocrine differentiation is blocked, as Notch also induces expression of the Ngn3 repressor Hes1. At the transition from high to intermediate Notch activity, only Sox9, but not Hes1, is maintained, thus de-repressing Ngn3 and initiating endocrine differentiation. In the absence of Sox9 activity, endocrine and ductal cells fail to differentiate, resulting in polycystic ducts devoid of primary cilia. Although Sox9 is required for Ngn3 induction, endocrine differentiation necessitates subsequent Sox9 downregulation and evasion from Notch activity via cell-autonomous repression of Sox9 by Ngn3. If high Notch levels are maintained, endocrine progenitors retain Sox9 and undergo ductal fate conversion. Taken together, our findings establish a novel role for Notch in initiating both ductal and endocrine development and reveal that Notch does not function in an on-off mode, but that a gradient of Notch activity produces distinct cellular states during pancreas development.


Developmental Biology | 2008

A Dosage-Dependent Requirement for Sox9 in Pancreatic Endocrine Cell Formation

Philip A. Seymour; Kristine K. Freude; Claire L. Dubois; Hung-Ping Shih; Nisha A. Patel; Maike Sander

We have previously shown the transcription factor SOX9 to be required for the maintenance of multipotential pancreatic progenitor cells in the early embryonic pancreas. However, the association of pancreatic endocrine defects with the Sox9-haploinsufficiency syndrome campomelic dysplasia (CD) implies additional later roles for Sox9 in endocrine development. Using short-term lineage tracing in mice, we demonstrate here that SOX9 marks a pool of multipotential pancreatic progenitors throughout the window of major cell differentiation. During mid-pancreogenesis, both endocrine and exocrine cells simultaneously arise from the SOX9(+) epithelial cords. Our analysis of mice with 50%-reduced Sox9 gene dosage in pancreatic progenitors reveals endocrine-specific defects phenocopying CD. By birth, these mice display a specific reduction in endocrine cell mass, while their exocrine compartment and total organ size is normal. The decrease in endocrine cells is caused by reduced generation of endocrine progenitors from the SOX9(+) epithelium. Conversely, formation of exocrine progenitors is insensitive to reduced Sox9 gene dosage, thus explaining the normal organ size at birth. Our results show that not only is SOX9 required for the maintenance of early pancreatic progenitors, but also governs their adoption of an endocrine fate. Our findings therefore suggest that defective endocrine specification might underlie the pancreatic phenotype of individuals with CD.


Cell Cycle | 2011

Progenitor cell domains in the developing and adult pancreas

Janel L. Kopp; Claire L. Dubois; Ergeng Hao; Fabrizio Thorel; Pedro Luis Herrera; Maike Sander

Unlike organs with defined stem cell compartments, such as the intestine, the pancreas has limited capacity to regenerate. The question of whether the adult pancreas harbors facultative stem/progenitor cells has been a prime subject of debate. Cumulative evidence from recent genetic lineage tracing studies, in which specific cell populations were marked and traced in adult mice, suggests that endocrine and acinar cells are no longer generated from progenitors in the adult pancreas. These studies further indicate that adult pancreatic ductal cells are not a source for endocrine cells following pancreatic injury, as previously suggested. Our own studies have shown that adult ductal cells reinitiate expression of some endocrine progenitor markers, including Ngn3, after injury by partial duct ligation (PDL), but that these cells do not undergo endocrine cell differentiation. Here, we present additional evidence that endocrine cells do not arise from ducts following b-cell ablation by streptozotocin or by a diphtheria toxin-expressing transgene or when b-cell ablation is combined with PDL. In this review, we discuss findings from recent lineage tracing studies of embryonic and adult pancreatic ductal cells. Based upon the combined evidence from these studies, we propose that multipotency is associated with a specific transcriptional signature.


Journal of Immunology | 2005

Cutting Edge: FADD Is Not Required for Antigen Receptor-Mediated NF-κB Activation

Adrian F. Arechiga; Bryan D. Bell; Jennifer C. Solomon; Isaac H. Chu; Claire L. Dubois; Brian E. Hall; Thaddeus C. George; David Coder; Craig M. Walsh

Recently, it has been demonstrated that stimulated T cells bearing defects in caspase-8 fail to promote nuclear shuttling of NF-κB complexes. Such cells display strikingly similar proliferative and survival defects as T cells lacking Fas-associated death domain protein (FADD) function. We characterized NF-κB signaling in T cells bearing a dominant-negative FADD transgene (FADDdd). Whereas FADDdd T cells displayed proliferative defects following activation, these were not a consequence of aberrant NF-κB signaling, as measured by IKK/IκB phosphorylation and IκB degradation. There were no appreciable defects in nuclear translocation of p65/Rel using ImageStream, a flow-based imaging cytometer. Pretreatment with benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, a potent caspase inhibitor, also failed to impede canonical NF-κB signaling. Secretion of IL-2 and up-regulation of various activation markers occurred normally. Thus, FADD does not play an essential role in NF-κB activation, suggesting an alternative route by which this adaptor promotes the clonal expansion of T cells.


PLOS ONE | 2011

Sox9-Haploinsufficiency Causes Glucose Intolerance in Mice

Claire L. Dubois; Hung Ping Shih; Philip A. Seymour; Nisha A. Patel; James M. Behrmann; Victoria Ngo; Maike Sander

The HMG box transcription factor Sox9 plays a critical role in progenitor cell expansion during pancreas organogenesis and is required for proper endocrine cell development in the embryo. Based on in vitro studies it has been suggested that Sox9 controls expression of a network of important developmental regulators, including Tcf2/MODY5, Hnf6, and Foxa2, in pancreatic progenitor cells. Here, we sought to: 1) determine whether Sox9 regulates this transcriptional network in vivo and 2) investigate whether reduced Sox9 gene dosage leads to impaired glucose homeostasis in adult mice. Employing two genetic models of temporally-controlled Sox9 inactivation in pancreatic progenitor cells, we demonstrate that contrary to in vitro findings, Sox9 is not required for Tcf2, Hnf6, or Foxa2 expression in vivo. Moreover, our analysis revealed a novel role for Sox9 in maintaining the expression of Pdx1/MODY4, which is an important transcriptional regulator of beta-cell development. We further show that reduced beta-cell mass in Sox9-haploinsufficient mice leads to glucose intolerance during adulthood. Sox9-haploinsufficient mice displayed 50% reduced beta-cell mass at birth, which recovered partially via a compensatory increase in beta-cell proliferation early postnatally. Endocrine islets from mice with reduced Sox9 gene dosage exhibited normal glucose stimulated insulin secretion. Our findings show Sox9 plays an important role in endocrine development by maintaining Ngn3 and Pdx1 expression. Glucose intolerance in Sox9-haploinsufficient mice suggests that mutations in Sox9 could play a role in diabetes in humans.


Journal of Biological Chemistry | 2010

Elevated Expression of Paneth Cell CRS4C in Ileitis-prone SAMP1/YitFc Mice REGIONAL DISTRIBUTION, SUBCELLULAR LOCALIZATION, AND MECHANISM OF ACTION

Michael T. Shanahan; Alda Vidrich; Yoshinori Shirafuji; Claire L. Dubois; Agnes H. Henschen-Edman; Susan J. Hagen; Steven M. Cohn; Andre J. Ouellette

Paneth cells at the base of small intestinal crypts of Lieberkühn secrete host defense peptides and proteins, including α-defensins, as mediators of innate immunity. Mouse Paneth cells also express α-defensin-related Defcr-rs genes that code for cysteine-rich sequence 4C (CRS4C) peptides that have a unique CPX triplet repeat motif. In ileitis-prone SAMP1/YitFc mice, Paneth cell levels of CRS4C mRNAs and peptides are induced more than a 1000-fold relative to non-prone strains as early as 4 weeks of age, with the mRNA and peptide levels highest in distal ileum and below detection in duodenum. CRS4C-1 peptides are found exclusively in Paneth cells where they occur only in dense core granules and thus are secreted to function in the intestinal lumen. CRS4C bactericidal peptide activity is membrane-disruptive in that it permeabilizes Escherichia coli and induces rapid microbial cell K+ efflux, but in a manner different from mouse α-defensin cryptdin-4. In in vitro studies, inactive pro-CRS4C-1 is converted to bactericidal CRS4C-1 peptide by matrix metalloproteinase-7 (MMP-7) proteolysis of the precursor proregion at the same residue positions that MMP-7 activates mouse pro-α-defensins. The absence of processed CRS4C in protein extracts of MMP-7-null mouse ileum demonstrates the in vivo requirement for intracellular MMP-7 in pro-CRS4C processing.


Gastroenterology | 2017

Loss of Pten and Activation of Kras Synergistically Induce Formation of Intraductal Papillary Mucinous Neoplasia From Pancreatic Ductal Cells in Mice

Janel L. Kopp; Claire L. Dubois; David F. Schaeffer; Atefeh Samani; Farnaz Taghizadeh; Robert W. Cowan; Andrew D. Rhim; Bangyan L. Stiles; Mark A. Valasek; Maike Sander

BACKGROUND & AIMS Intraductal papillary mucinous neoplasias (IPMNs) are precancerous cystic lesions that can develop into pancreatic ductal adenocarcinomas (PDACs). These large macroscopic lesions are frequently detected during medical imaging, but it is unclear how they form or progress to PDAC. We aimed to identify cells that form IPMNs and mutations that promote IPMN development and progression. METHODS We generated mice with disruption of Pten specifically in ductal cells (Sox9CreERT2;Ptenflox/flox;R26RYFP or PtenΔDuct/ΔDuct mice) and used PtenΔDuct/+ and Pten+/+ mice as controls. We also generated KrasG12D;PtenΔDuct/ΔDuct and KrasG12D;PtenΔDuct/+ mice. Pancreata were collected when mice were 28 weeks to 14.5 months old and analyzed by histology, immunohistochemistry, and electron microscopy. We performed multiplexed droplet digital polymerase chain reaction to detect spontaneous Kras mutations in PtenΔDuct/ΔDuct mice and study the effects of Ras pathway activation on initiation and progression of IPMNs. We obtained 2 pancreatic sections from a patient with an invasive pancreatobiliary IPMN and analyzed the regions with and without the invasive IPMN (control tissue) by immunohistochemistry. RESULTS Mice with ductal cell-specific disruption of Pten but not control mice developed sporadic, macroscopic, intraductal papillary lesions with histologic and molecular features of human IPMNs. PtenΔDuct/ΔDuct mice developed IPMNs of several subtypes. In PtenΔDuct/ΔDuct mice, 31.5% of IPMNs became invasive; invasion was associated with spontaneous mutations in Kras. KrasG12D;PtenΔDuct/ΔDuct mice all developed invasive IPMNs within 1 month. In KrasG12D;PtenΔDuct/+ mice, 70% developed IPMN, predominately of the pancreatobiliary subtype, and 63.3% developed PDAC. In all models, IPMNs and PDAC expressed the duct-specific lineage tracing marker yellow fluorescent protein. In immunohistochemical analyses, we found that the invasive human pancreatobiliary IPMN tissue had lower levels of PTEN and increased levels of phosphorylated (activated) ERK compared with healthy pancreatic tissue. CONCLUSIONS In analyses of mice with ductal cell-specific disruption of Pten, with or without activated Kras, we found evidence for a ductal cell origin of IPMNs. We also showed that PTEN loss and activated Kras have synergistic effects in promoting development of IPMN and progression to PDAC.


Gut | 2018

Cell of origin affects tumour development and phenotype in pancreatic ductal adenocarcinoma

Alex Y L Lee; Claire L. Dubois; Karnjit Sarai; Soheila Zarei; David F. Schaeffer; Maike Sander; Janel L. Kopp

Objective Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive tumour thought to arise from ductal cells via pancreatic intraepithelial neoplasia (PanIN) precursor lesions. Modelling of different genetic events in mice suggests both ductal and acinar cells can give rise to PDAC. However, the impact of cellular context alone on tumour development and phenotype is unknown. Design We examined the contribution of cellular origin to PDAC development by inducing PDAC-associated mutations, KrasG12D expression and Trp53 loss, specifically in ductal cells (Sox9CreER;KrasLSL-G12D;Trp53flox/flox (‘Duct:KPcKO ’)) or acinar cells (Ptf1aCreER;KrasLSL-G12D;Trp53flox/flox (‘Acinar:KPcKO ’)) in mice. We then performed a thorough analysis of the resulting histopathological changes. Results Both mouse models developed PDAC, but Duct:KPcKO mice developed PDAC earlier than Acinar:KPcKO mice. Tumour development was more rapid and associated with high-grade murine PanIN (mPanIN) lesions in Duct:KPcKO mice. In contrast, Acinar:KPcKO mice exhibited widespread metaplasia and low-grade as well as high-grade mPanINs with delayed progression to PDAC. Acinar-cell-derived tumours also had a higher prevalence of mucinous glandular features reminiscent of early mPanIN lesions. Conclusion These findings indicate that ductal cells are primed to form carcinoma in situ that become invasive PDAC in the presence of oncogenic Kras and Trp53 deletion, while acinar cells with the same mutations appear to require a prolonged period of transition or reprogramming to initiate PDAC. Our findings illustrate that PDAC can develop in multiple ways and the cellular context in which mutations are acquired has significant impact on precursor lesion initiation, disease progression and tumour phenotype.

Collaboration


Dive into the Claire L. Dubois's collaboration.

Top Co-Authors

Avatar

Maike Sander

University of California

View shared research outputs
Top Co-Authors

Avatar

Janel L. Kopp

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David F. Schaeffer

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Hung Ping Shih

University of California

View shared research outputs
Top Co-Authors

Avatar

Alex Y L Lee

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Ergeng Hao

University of California

View shared research outputs
Top Co-Authors

Avatar

Nisha A. Patel

University of California

View shared research outputs
Top Co-Authors

Avatar

Atefeh Samani

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Farnaz Taghizadeh

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge