Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire M. Edwards is active.

Publication


Featured researches published by Claire M. Edwards.


Bone | 2008

The Pathogenesis of the Bone Disease of Multiple Myeloma

Claire M. Edwards; Junling Zhuang; Gregory R. Mundy

Multiple myeloma is a fatal hematologic malignancy associated with clonal expansion of malignant plasma cells within the bone marrow and the development of a destructive osteolytic bone disease. The principal cellular mechanisms involved in the development of myeloma bone disease are an increase in osteoclastic bone resorption, and a reduction in bone formation. Myeloma cells are found in close association with sites of active bone resorption, and the interactions between myeloma cells and other cells within the specialized bone marrow microenvironment are essential, both for tumor growth and the development of myeloma bone disease. This review discusses the many different factors which have been implicated in myeloma bone disease, including the evidence for their role in myeloma and subsequent therapeutic implications.


Blood | 2011

Host-derived adiponectin is tumor-suppressive and a novel therapeutic target for multiple myeloma and the associated bone disease.

Jessica A. Fowler; Seint T. Lwin; Matthew T. Drake; James R. Edwards; Robert A. Kyle; Gregory R. Mundy; Claire M. Edwards

The contributions of the host microenvironment to the pathogenesis of multiple myeloma, including progression from the non-malignant disorder monoclonal gammopathy of undetermined significance, are poorly understood. In the present study, microarray analysis of a murine model requiring a unique host microenvironment for myeloma development identified decreased host-derived adiponectin compared with normal mice. In support, clinical analysis revealed decreased serum adiponectin concentrations in monoclonal gammopathy of undetermined significance patients who subsequently progressed to myeloma. We investigated the role of adiponectin in myeloma pathogenesis and as a treatment approach, using both mice deficient in adiponectin and pharmacologic enhancement of circulating adiponectin. Increased tumor burden and bone disease were observed in myeloma-bearing adiponectin-deficient mice, and adiponectin was found to induce myeloma cell apoptosis. The apolipoprotein peptide mimetic L-4F was used for pharmacologic enhancement of adiponectin. L-4F reduced tumor burden, increased survival of myeloma-bearing mice, and prevented myeloma bone disease. Collectively, our studies have identified a novel mechanism whereby decreased host-derived adiponectin promotes myeloma tumor growth and osteolysis. Furthermore, we have established the potential therapeutic benefit of increasing adiponectin for the treatment of myeloma and the associated bone disease.


Cancer Research | 2014

Contributions of the host microenvironment to cancer-induced bone disease.

Sam Olechnowicz; Claire M. Edwards

The bone marrow provides a specialized and highly supportive microenvironment for tumor growth and development of the associated bone disease. It is a preferred site for breast and prostate cancer bone metastasis and the hematologic malignancy, multiple myeloma. For many years, researchers have focused upon the interactions between tumor cells and the cells directly responsible for bone remodeling, namely osteoclasts and osteoblasts. However, there is ever-increasing evidence for a multitude of ways in which the bone marrow microenvironment can promote disease pathogenesis, including via cancer-associated fibroblasts, the hematopoietic stem cell niche, myeloid-derived suppressor cells, and the sympathetic nervous system. This review discusses the recent advances in our understanding of the contribution of the host microenvironment to the development of cancer-induced bone disease.


PLOS ONE | 2012

Osteoclasts in multiple myeloma are derived from Gr-1+CD11b+myeloid-derived suppressor cells.

Junling Zhuang; Jianghong Zhang; Seint T. Lwin; James R. Edwards; Claire M. Edwards; Gregory R. Mundy; Xiangli Yang

Osteoclasts play a key role in the development of cancer-associated osteolytic lesions. The number and activity of osteoclasts are often enhanced by tumors. However, the origin of osteoclasts is unknown. Myeloid-derived suppressor cells (MDSCs) are one of the pre-metastatic niche components that are induced to expand by tumor cells. Here we show that the MDSCs can differentiate into mature and functional osteoclasts in vitro and in vivo. Inoculation of 5TGM1-GFP myeloma cells into C57BL6/KaLwRij mice led to a significant expansion of MDSCs in blood, spleen, and bone marrow over time. When grown in osteoclastogenic media in vitro, MDSCs from tumor-challenged mice displayed 14 times greater potential to differentiate into mature and functional osteoclasts than those from non-tumor controls. Importantly, MDSCs from tumor-challenged LacZ transgenic mice differentiated into LacZ+osteoclasts in vivo. Furthermore, a significant increase in tumor burden and bone loss accompanied by increased number of osteoclasts was observed in mice co-inoculated with tumor-challenged MDSCs and 5TGM1 cells compared to the control animals received 5TGM1 cells alone. Finally, treatment of MDSCs from myeloma-challenged mice with Zoledronic acid (ZA), a potent inhibitor of bone resorption, inhibited the number of osteoclasts formed in MDSC cultures and the expansion of MDSCs and bone lesions in mice. Collectively, these data provide in vitro and in vivo evidence that tumor-induced MDSCs exacerbate cancer-associated bone destruction by directly serving as osteoclast precursors.


Cancer Research | 2012

Bone marrow stromal cells create a permissive microenvironment for myeloma development: a new stromal role for Wnt inhibitor Dkk1.

Jessica A. Fowler; Gregory R. Mundy; Seint T. Lwin; Claire M. Edwards

The rapid progression of multiple myeloma is dependent upon cellular interactions within the bone marrow microenvironment. In vitro studies suggest that bone marrow stromal cells (BMSC) can promote myeloma growth and survival and osteolytic bone disease. However, it is not possible to recreate all cellular aspects of the bone marrow microenvironment in an in vitro system, and the contributions of BMSCs to myeloma pathogenesis in an intact, immune competent, in vivo system are unknown. To investigate this, we used a murine myeloma model that replicates many features of the human disease. Coinoculation of myeloma cells and a BMSC line, isolated from myeloma-permissive mice, into otherwise nonpermissive mice resulted in myeloma development, associated with tumor growth within bone marrow and osteolytic bone disease. In contrast, inoculation of myeloma cells alone did not result in myeloma. BMSCs inoculated alone induced osteoblast suppression, associated with an increase in serum concentrations of the Wnt signaling inhibitor, Dkk1. Dkk1 was highly expressed in BMSCs and in myeloma-permissive bone marrow. Knockdown of Dkk1 expression in BMSCs decreased their ability to promote myeloma and the associated bone disease in mice. Collectively, our results show novel roles of BMSCs and BMSC-derived Dkk1 in the pathogenesis of multiple myeloma in vivo.


Biology Direct | 2010

A mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease

Bruce P. Ayati; Claire M. Edwards; Glenn F. Webb; John P. Wikswo

BackgroundMultiple myeloma is a hematologic malignancy associated with the development of a destructive osteolytic bone disease.ResultsMathematical models are developed for normal bone remodeling and for the dysregulated bone remodeling that occurs in myeloma bone disease. The models examine the critical signaling between osteoclasts (bone resorption) and osteoblasts (bone formation). The interactions of osteoclasts and osteoblasts are modeled as a system of differential equations for these cell populations, which exhibit stable oscillations in the normal case and unstable oscillations in the myeloma case. In the case of untreated myeloma, osteoclasts increase and osteoblasts decrease, with net bone loss as the tumor grows. The therapeutic effects of targeting both myeloma cells and cells of the bone marrow microenvironment on these dynamics are examined.ConclusionsThe current model accurately reflects myeloma bone disease and illustrates how treatment approaches may be investigated using such computational approaches.ReviewersThis article was reviewed by Ariosto Silva and Mark P. Little.


Bone | 2011

Tumor-host cell interactions in the bone disease of myeloma

Jessica A. Fowler; Claire M. Edwards; Peter I. Croucher

Multiple myeloma is a hematological malignancy that is associated with the development of a destructive osteolytic bone disease, which is a major cause of morbidity for patients with myeloma. Interactions between myeloma cells and cells of the bone marrow microenvironment promote both tumor growth and survival and bone destruction, and the osteolytic bone disease is now recognized as a contributing component to tumor progression. Since myeloma bone disease is associated with both an increase in osteoclastic bone resorption and a suppression of osteoblastic bone formation, research to date has largely focused upon the role of the osteoclast and osteoblast. However, it is now clear that other cell types within the bone marrow, including cells of the immune system, mesenchymal stem cells and bone marrow stromal cells, can contribute to the development of myeloma bone disease. This review discusses the cellular mechanisms and potential therapeutic targets that have been implicated in myeloma bone disease.


American Journal of Hematology | 2009

Myeloma cells exhibit an increase in proteasome activity and an enhanced response to proteasome inhibition in the bone marrow microenvironment in vivo.

Claire M. Edwards; Seint T. Lwin; Jessica A. Fowler; Babatunde O. Oyajobi; Junling Zhuang; Andreia Bates; Gregory R. Mundy

The proteasome inhibitor bortezomib has a striking clinical benefit in patients with multiple myeloma. It is unknown whether the bone marrow microenvironment directly contributes to the dramatic response of myeloma cells to proteasome inhibition in vivo. We have used the well‐characterized 5TGM1 murine model of myeloma to investigate myeloma growth within bone and response to the proteasome inhibitor bortezomib in vivo. Myeloma cells freshly isolated from the bone marrow of myeloma‐bearing mice were found to have an increase in proteasome activity and an enhanced response to in vitro proteasome inhibition, as compared with pre‐inoculation myeloma cells. Treatment of myeloma‐bearing mice with bortezomib resulted in a greater reduction in tumor burden when the myeloma cells were located within the bone marrow when compared with extra‐osseous sites. Our results demonstrate that myeloma cells exhibit an increase in proteasome activity and an enhanced response to bortezomib treatment when located within the bone marrow microenvironment in vivo. Am. J. Hematol., 2009.


Journal of Bone and Mineral Research | 2010

Gr-1+CD11b+ Myeloid-Derived Suppressor Cells: Formidable Partners in Tumor Metastasis

Li Yang; Claire M. Edwards; Gregory R. Mundy

The growth and metastasis of solid tumors not only depends on their ability to escape from immune surveillance but also hinges on their ability to invade the vasculature system as well as to induce the formation of new blood vessels. Gr‐1+CD11b+ myeloid‐derived suppressor cells (MDSCs), overproduced in tumor‐bearing hosts, contribute significantly to all these aspects. They also have a potential role in the osteolysis associated with bone metastases. They are formidable partners in tumor metastasis.


Disease Models & Mechanisms | 2009

A murine model of myeloma that allows genetic manipulation of the host microenvironment

Jessica A. Fowler; Gregory R. Mundy; Seint T. Lwin; Conor C. Lynch; Claire M. Edwards

SUMMARY Multiple myeloma, and the associated osteolytic bone disease, is highly dependent upon cellular interactions within the bone marrow microenvironment. A major limitation of existing myeloma models is the requirement for a specific host strain of mouse, preventing molecular examination of the bone marrow microenvironment. The aim of the current study was to develop a model of myeloma in which the host microenvironment could be modified genetically. The Radl 5T murine model of myeloma is well characterized and closely mimics human myeloma. In the current study, we demonstrate 5T myeloma establishment in recombination activating gene 2 (RAG-2)-deficient mice, which have improper B- and T-cell development. Importantly, these mice can be easily bred with genetically modified mice to generate double knockout mice, allowing manipulation of the host microenvironment at a molecular level. Inoculation of 5TGM1 myeloma cells into RAG-2−/− mice resulted in myeloma development, which was associated with tumor growth within bone and an osteolytic bone disease, as assessed by microcomputed tomography (microCT), histology and histomorphometry. Myeloma-bearing RAG-2−/− mice displayed many features that were similar to both human myeloma and the original Radl 5T model. To demonstrate the use of this model, we have examined the effect of host-derived matrix metalloproteinase 9 (MMP-9) in the development of myeloma in vivo. Inoculation of 5TGM1 myeloma cells into mice that are deficient in RAG-2 and MMP-9 resulted in a reduction in both tumor burden and osteolytic bone disease when compared with RAG-2-deficient wild-type myeloma-bearing mice. The establishment of myeloma in RAG-2−/− mice permits molecular examination of the host contribution to myeloma pathogenesis in vivo.

Collaboration


Dive into the Claire M. Edwards's collaboration.

Top Co-Authors

Avatar

Gregory R. Mundy

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge