Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire M. Williams is active.

Publication


Featured researches published by Claire M. Williams.


British Journal of Pharmacology | 2002

Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol

Tim C. Kirkham; Claire M. Williams; Filomena Fezza; Vincenzo Di Marzo

Endocannabinoids are implicated in appetite and body weight regulation. In rodents, anandamide stimulates eating by actions at central CB1 receptors, and hypothalamic endocannabinoids may be under the negative control of leptin. However, changes to brain endocannabinoid levels in direct relation to feeding or changing nutritional status have not been investigated. We measured anandamide and 2‐arachidonoyl glycerol (2‐AG) levels in feeding‐associated brain regions of rats, during fasting, feeding of a palatable food, or after satiation. Endocannabinoid levels were compared to those in rats fed ad libitum, at a point in their daily cycle when motivation to eat was absent. Fasting increased levels of anandamide and 2‐AG in the limbic forebrain and, to a lesser extent, of 2‐AG in the hypothalamus. By contrast, hypothalamic 2‐AG declined as animals ate. No changes were detected in satiated rats. Endocannabinoid levels in the cerebellum, a control region not directly involved in the control of food intake, were unaffected by any manipulation. As 2‐AG was most sensitive to variation during feeding, and to leptin regulation in a previous study, we examined the behavioural effects of 2‐AG when injected into the nucleus accumbens shell, a limbic forebrain area strongly linked to eating motivation. 2‐AG potently, and dose‐dependently, stimulated feeding. This effect was attenuated by the CB1 receptor antagonist SR141716. These findings provide the first direct evidence of altered brain levels of endocannabinoids, and of 2‐AG in particular, during fasting and feeding. The nature of these effects supports a role for endocannabinoids in the control of appetitive motivation.


Psychopharmacology | 1999

Anandamide induces overeating: mediation by central cannabinoid (CB1) receptors

Claire M. Williams; Tim C. Kirkham

Abstract  Rationale: Central cannabinoid systems have been implicated in appetite regulation by the respective hyperphagic actions of exogenous cannabinoids, such as Δ9-THC, and hypophagic effects of selective cannabinoid receptor antagonists. Objective: This study examined whether an endogenous cannabinoid, anandamide, could induce overeating, via a specific action at central (CB1) cannabinoid receptors. Methods: Pre-satiated male rats (n=18), received subcutaneous injections of anandamide (0.5, 1.0, 5.0, 10.0 mg/kg) before 3-h, nocturnal food intake tests. In a second series of intake tests (n=8), anandamide injection (1.0 mg/kg) was preceded by injection of the specific CB1 receptor antagonist, SR141716 (0.1, 0.5, 1.0 mg/kg SC). Results: All doses of anandamide induced significant overeating, with 1.0 mg/kg being most potent. Additionally, hyperphagia induced by 1.0 mg/kg anandamide was dose-dependently attenuated by SR141716 pretreatment. Conclusion: This first demonstration of anandamide-induced, CB1-mediated, overeating provides important evidence for the involvement of a central cannabinoid system in the normal control of eating.


Free Radical Biology and Medicine | 2008

Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels.

Claire M. Williams; Manal M Abd El Mohsen; David Vauzour; Catarina Rendeiro; Laurie T. Butler; Judi A. Ellis; Matthew Whiteman; Jeremy P. E. Spencer

Phytochemical-rich foods have been shown to be effective at reversing age-related deficits in memory in both animals and humans. We show that a supplementation with a blueberry diet (2% w/w) for 12 weeks improves the performance of aged animals in spatial working memory tasks. This improvement emerged within 3 weeks and persisted for the remainder of the testing period. Memory performance correlated well with the activation of cAMP-response element-binding protein (CREB) and increases in both pro- and mature levels of brain-derived neurotrophic factor (BDNF) in the hippocampus. Changes in CREB and BDNF in aged and blueberry-supplemented animals were accompanied by increases in the phosphorylation state of extracellular signal-related kinase (ERK1/2), rather than that of calcium calmodulin kinase (CaMKII and CaMKIV) or protein kinase A. Furthermore, age and blueberry supplementation were linked to changes in the activation state of Akt, mTOR, and the levels of Arc/Arg3.1 in the hippocampus, suggesting that pathways involved in de novo protein synthesis may be involved. Although causal relationships cannot be made among supplementation, behavior, and biochemical parameters, the measurement of anthocyanins and flavanols in the brain following blueberry supplementation may indicate that changes in spatial working memory in aged animals are linked to the effects of flavonoids on the ERK-CREB-BDNF pathway.


Physiology & Behavior | 1998

Hyperphagia in pre-fed rats following oral Δ9-THC

Claire M. Williams; Peter J. Rogers; Tim C. Kirkham

Abstract WILLIAMS, C.M., P.J. ROGERS AND T.C. KIRKHAM. Hyperphagia in pre-fed rats following oral Δ 9 -THC. PHYSIOL BEHAV 65 (2) 343–346, 1998.—Using a pre-feed paradigm, the effects of orally-administered Δ 9 - tetrahydrocannabinol (THC) on low baseline levels of nocturnal feeding were assessed. Following 2-h access to a palatable wet mash diet at dark onset, adult male Lister hooded rats (Charles River) were treated with either sesame seed oil vehicle or Δ 9 - tetrahydrocannabinol (0.063, 0.12, 0.25, 0.5, 1.0, or 2.0 mg/kg). One hour later, rats were allowed ad libitum access to standard chow, and intakes were monitored over the subsequent 24 h. Doses of 0.5, 1.0, and 2.0 mg/kg produced substantial hyperphagia during the first hour of testing. Subsequently, rats compensated for their overconsumption so that 24-h intakes were similar in all conditions. The data confirm anecdotal reports of the orexigenic actions of exogenous cannabinoids and suggest a critical role for endogenous cannabinoid systems in the regulation of appetite .


Physiology & Behavior | 2002

Observational analysis of feeding induced by Δ9-THC and anandamide

Claire M. Williams; Tim C. Kirkham

Endogenous cannabinoid systems have been implicated in the physiological regulation of appetite by the ability of cannabinoid receptor agonists to induce hyperphagia. Both the exogenous cannabinoid Δ9-THC and the endocannabinoid arachidonoyl ethanolamide (anandamide) stimulate eating in rats. However, there has been no detailed analysis of the adjustments to feeding behaviour underlying this action. We used observational methods to determine the specific components of feeding affected by these compounds. Two groups (n=6) of presatiated, male, Lister hooded rats received either Δ9-THC (0, 0.5, 1.0 or 2.0 mg/kg) or anandamide (0, 1.0, 5.0 or 10.0 mg/kg sc), and their behaviour in an open field was recorded for 45 min. Behaviour (eating, drinking, rearing, grooming, sniffing, locomotion, resting/inactivity, sleeping) was continuously monitored to provide data on the latency, temporal distribution, duration and frequency of each category. Under control conditions, a minority of animals ate small quantities of lab chow, with feeding beginning only after a long latency. Both Δ9-THC and anandamide selectively stimulated feeding, with a marked reduction in latency. Apart from its rapid onset, cannabinoid-induced eating retained the normal, species-typical sequence, characteristic of untreated, free-feeding rats. Our data suggest that exogenously administered cannabinoids promote eating by increasing the incentive value of food and support a role for endocannabinoids in the regulation of the appetitive aspects of feeding motivation.


Pharmacology, Biochemistry and Behavior | 2002

Reversal of Δ9-THC hyperphagia by SR141716 and naloxone but not dexfenfluramine

Claire M. Williams; Tim C. Kirkham

Presatiated adult male Lister hooded rats received oral administration of the exogenous cannabinoid Delta-9-tetrahydrocannabinol (Delta(9)-THC; 1.0 mg/kg) in combination with subcutaneous injection of either the cannabinoid CB1 antagonist N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide (SR141716; 0, 0.05, 0.1, 0.5 or 1.0 mg/kg), the CB2 antagonist N-[(1S)-endo-1,3,3-trimethyl bicyclo[2.2.1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528; 0, 0.05, 0.1, 0.5 or 1.0 mg/kg), the general opioid antagonist naloxone (0.1, 0.5, 1.0 or 5.0 mg/kg) or the 5-HT agonist dexfenfluramine (0.05, 0.1, 0.5, 1.0 or 5.0 mg/kg). Food (chow) intake was measured over 2 h from the onset of the dark period. Delta(9)-THC induced significant hyperphagia, which was attenuated by subanorectic doses of SR141716 and naloxone. Neither SR144528 nor dexfenfluramine affected Delta(9)-THC-induced feeding. These data confirm mediation of Delta(9)-THC hyperphagia by central-type CB1 receptors, and support a functional relationship between cannabinoid and opioid systems in relation to appetite regulation. Stimulation of CB1 receptors may promote feeding by actions on food reward rather than by inhibition of serotonergic satiety mechanisms.


Journal of Pharmacology and Experimental Therapeutics | 2010

Cannabidiol Displays Antiepileptiform and Antiseizure Properties In Vitro and In Vivo

Nicholas Jones; Andrew John Hill; Imogen Smith; S. A. Bevan; Claire M. Williams; Benjamin J. Whalley; Gary J. Stephens

Plant-derived cannabinoids (phytocannabinoids) are compounds with emerging therapeutic potential. Early studies suggested that cannabidiol (CBD) has anticonvulsant properties in animal models and reduced seizure frequency in limited human trials. Here, we examine the antiepileptiform and antiseizure potential of CBD using in vitro electrophysiology and an in vivo animal seizure model, respectively. CBD (0.01–100 μM) effects were assessed in vitro using the Mg2+-free and 4-aminopyridine (4-AP) models of epileptiform activity in hippocampal brain slices via multielectrode array recordings. In the Mg2+-free model, CBD decreased epileptiform local field potential (LFP) burst amplitude [in CA1 and dentate gyrus (DG) regions] and burst duration (in all regions) and increased burst frequency (in all regions). In the 4-AP model, CBD decreased LFP burst amplitude (in CA1 only at 100 μM CBD), burst duration (in CA3 and DG), and burst frequency (in all regions). CBD (1, 10, and 100 mg/kg) effects were also examined in vivo using the pentylenetetrazole model of generalized seizures. CBD (100 mg/kg) exerted clear anticonvulsant effects with significant decreases in incidence of severe seizures and mortality compared with vehicle-treated animals. Finally, CBD acted with only low affinity at cannabinoid CB1 receptors and displayed no agonist activity in [35S]guanosine 5′-O-(3-thio)triphosphate assays in cortical membranes. These findings suggest that CBD acts, potentially in a CB1 receptor-independent manner, to inhibit epileptiform activity in vitro and seizure severity in vivo. Thus, we demonstrate the potential of CBD as a novel antiepileptic drug in the unmet clinical need associated with generalized seizures.


Nutrition Research Reviews | 2001

Endogenous cannabinoids and appetite

Tim C. Kirkham; Claire M. Williams

Since pre-history, Cannabis sativa has been exploited for its potent and manifold pharmacological actions. Amongst the most renowned of these actions is a tendency to provoke ravenous eating. The characterization of the psychoactive principals in cannabis (exogenous cannabinoids) and, more recently, the discovery of specific brain cannabinoid receptors and their endogenous ligands (endocannabinoids) has stimulated research into the physiological roles of endocannabinoid systems. In this review, we critically discuss evidence from the literature that describe studies on animals and human subjects to support endocannabinoid involvement in the control of appetite. We describe the hyperphagic actions of the exogenous cannabinoid, Delta9-tetrahydrocannabinol, and the endogenous CB1 ligands, anandamide and 2-arachidonylglycerol, and present evidence to support a specific role of endocannabinoid systems in appetitive processes related to the incentive and reward properties of food. A case is made for more comprehensive and systematic analyses of cannabinoid actions on eating, in the anticipation of improved therapies for disorders of appetite and body weight, and a better understanding of the biopsychological processes underlying hunger.


Pharmacology & Therapeutics | 2012

Phytocannabinoids as novel therapeutic agents in CNS disorders

Andrew John Hill; Claire M. Williams; Benjamin J. Whalley; Gary J. Stephens

The Cannabis sativa herb contains over 100 phytocannabinoid (pCB) compounds and has been used for thousands of years for both recreational and medicinal purposes. In the past two decades, characterisation of the bodys endogenous cannabinoid (CB) (endocannabinoid, eCB) system (ECS) has highlighted activation of central CB(1) receptors by the major pCB, Δ(9)-tetrahydrocannabinol (Δ(9)-THC) as the primary mediator of the psychoactive, hyperphagic and some of the potentially therapeutic properties of ingested cannabis. Whilst Δ(9)-THC is the most prevalent and widely studied pCB, it is also the predominant psychotropic component of cannabis, a property that likely limits its widespread therapeutic use as an isolated agent. In this regard, research focus has recently widened to include other pCBs including cannabidiol (CBD), cannabigerol (CBG), Δ(9)tetrahydrocannabivarin (Δ(9)-THCV) and cannabidivarin (CBDV), some of which show potential as therapeutic agents in preclinical models of CNS disease. Moreover, it is becoming evident that these non-Δ(9)-THC pCBs act at a wide range of pharmacological targets, not solely limited to CB receptors. Disorders that could be targeted include epilepsy, neurodegenerative diseases, affective disorders and the central modulation of feeding behaviour. Here, we review pCB effects in preclinical models of CNS disease and, where available, clinical trial data that support therapeutic effects. Such developments may soon yield the first non-Δ(9)-THC pCB-based medicines.


Physiology & Behavior | 2011

Consumption of cocoa flavanols results in an acute improvement in visual and cognitive functions.

David T. Field; Claire M. Williams; Laurie T. Butler

Cocoa flavanols (CF) influence physiological processes in ways that suggest their consumption may improve aspects of neural function, and previous studies have found positive influences of CF on cognitive performance. In this preliminary study we investigated whether visual, as well as cognitive, function is influenced by an acute dose of CF in young adults. We employed a randomized, single-blinded, order counterbalanced, crossover design in which 30 healthy adults consumed both dark chocolate containing 720mg CF and a matched quantity of white chocolate, with a one week interval between testing sessions. Visual contrast sensitivity was assessed by reading numbers that became progressively more similar in luminance to their background. Motion sensitivity was assessed firstly by measuring the threshold proportion of coherently moving signal dots that could be detected against a background of random motion, and secondly by determining the minimum time required to detect motion direction in a display containing a high proportion of coherent motion. Cognitive performance was assessed using a visual spatial working memory for location task and a choice reaction time task designed to engage processes of sustained attention and inhibition. Relative to the control condition, CF improved visual contrast sensitivity and reduced the time required to detect motion direction, but had no statistically reliable effect on the minimum proportion of coherent motion that could be detected. In terms of cognitive performance, CF improved spatial memory and performance on some aspects of the choice reaction time task. As well as extending the range of cognitive tasks that are known to be influenced by CF consumption, this is the first report of acute effects of CF on the efficiency of visual function. These acute effects can be explained by increased cerebral blood flow caused by CF, although in the case of contrast sensitivity there may be an additional contribution from CF induced retinal blood flow changes.

Collaboration


Dive into the Claire M. Williams's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Vauzour

University of East Anglia

View shared research outputs
Researchain Logo
Decentralizing Knowledge