Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire Mennan is active.

Publication


Featured researches published by Claire Mennan.


BioMed Research International | 2013

Isolation and Characterisation of Mesenchymal Stem Cells from Different Regions of the Human Umbilical Cord

Claire Mennan; Karina T. Wright; Atanu Bhattacharjee; Birender Balain; James B. Richardson; Sally Roberts

Umbilical cords as a source of stem cells are of increasing interest for cell therapies as they present little ethical consideration and are reported to contain immune privileged cells which may be suitable for allogeneic based therapies. Mesenchymal stem cells (MSCs) sourced from several different cord regions, including artery, vein, cord lining, and Whartons jelly, are described in the literature. However, no one study has yet isolated and characterised MSCs from all regions of the same cord to determine the most suitable cells for cell based therapeutics.


Scientific Reports | 2016

Characterisation of synovial fluid and infrapatellar fat pad derived mesenchymal stromal cells: The influence of tissue source and inflammatory stimulus

John Garcia; Karina T. Wright; Sally Roberts; Jan Herman Kuiper; Chas Mangham; James B. Richardson; Claire Mennan

The infrapatellar fat pad (FP) and synovial fluid (SF) in the knee serve as reservoirs of mesenchymal stromal cells (MSCs) with potential therapeutic benefit. We determined the influence of the donor on the phenotype of donor matched FP and SF derived MSCs and examined their immunogenic and immunomodulatory properties before and after stimulation with the pro-inflammatory cytokine interferon-gamma (IFN-γ). Both cell populations were positive for MSC markers CD73, CD90 and CD105, and displayed multipotency. FP-MSCs had a significantly faster proliferation rate than SF-MSCs. CD14 positivity was seen in both FP-MSCs and SF-MSCs, and was positively correlated to donor age but only for SF-MSCs. Neither cell population was positive for the co-stimulatory markers CD40, CD80 and CD86, but both demonstrated increased levels of human leukocyte antigen-DR (HLA-DR) following IFN-γ stimulation. HLA-DR production was positively correlated with donor age for FP-MSCs but not SF-MSCs. The immunomodulatory molecule, HLA-G, was constitutively produced by both cell populations, unlike indoleamine 2, 3-dioxygenase which was only produced following IFN-γ stimulation. FP and SF are accessible cell sources which could be utilised in the treatment of cartilage injuries, either by transplantation following ex-vivo expansion or endogenous targeting and mobilisation of cells close to the site of injury.


Stem Cells International | 2016

Chondrogenic Potency Analyses of Donor-Matched Chondrocytes and Mesenchymal Stem Cells Derived from Bone Marrow, Infrapatellar Fat Pad, and Subcutaneous Fat

John Garcia; Claire Mennan; Helen S. McCarthy; Sally Roberts; James B. Richardson; Karina T. Wright

Autologous chondrocyte implantation (ACI) is a cell-based therapy that has been used clinically for over 20 years to treat cartilage injuries more efficiently in order to negate or delay the need for joint replacement surgery. In this time, very little has changed in the ACI procedure, but now many centres are considering or using alternative cell sources for cartilage repair, in particular mesenchymal stem cells (MSCs). In this study, we have tested the chondrogenic potential of donor-matched MSCs derived from bone marrow (BM), infrapatellar fat pad (FP), and subcutaneous fat (SCF), compared to chondrocytes. We have confirmed that there is a chondrogenic potency hierarchy ranging across these cell types, with the most potent being chondrocytes, followed by FP-MSCs, BM-MSCs, and lastly SCF-MSCs. We have also examined gene expression and surface marker profiles in a predictive model to identify cells with enhanced chondrogenic potential. In doing so, we have shown that Sox-9, Alk-1, and Coll X expressions, as well as immunopositivity for CD49c and CD39, have predictive value for all of the cell types tested in indicating chondrogenic potency. The findings from this study have significant clinical implications for the refinement and development of novel cell-based cartilage repair strategies.


Regenerative Medicine | 2013

Characterization of the cells in repair tissue following autologous chondrocyte implantation in mankind: a novel report of two cases

Karina T. Wright; Claire Mennan; Hannah Fox; James B. Richardson; Robin Banerjee; Sally Roberts

AIM Autologous chondrocyte implantation (ACI) is used worldwide for the treatment of cartilage defects. This study has aimed to assess for the first time the cells that are contained within human ACI repair tissues several years post-treatment. We have compared the phenotypic properties of cells from within the ACI repair with adjacent chondrocytes and subchondral bone-derived mesenchymal stromal/stem cells (MSCs). MATERIALS & METHODS Two patients undergoing arthroplasty of their ACI-treated joint were investigated. Tissue and cells were isolated from the repair site, adjacent macroscopically normal cartilage and MSCs from the subchondral bone were characterized for their growth kinetics, morphology, immunoprofile and differentiation capacity. RESULTS ACI repair tissue appeared fibrocartilaginous, and ACI repair cells were heterogeneous in morphology and size when freshly isolated, becoming more homogeneous, resembling chondrocytes from adjacent cartilage, after culture expansion. The same weight of ACI repair tissue resulted in less cells than macroscopically normal cartilage. During expansion, ACI repair cells proliferated faster than MSCs but slower than chondrocytes. ACI repair cell immunoprofiles resembled chondrocytes, but their differentiation capacity matched MSCs. CONCLUSION This novel report demonstrates that human ACI repair cell phenotypes resemble both chondrocytes and MSCs but at different stages of their isolation and expansion in vitro.


FEBS Open Bio | 2016

Mesenchymal stromal cells derived from whole human umbilical cord exhibit similar properties to those derived from Wharton's jelly and bone marrow

Claire Mennan; Sharon J. Brown; Helen S. McCarthy; Eleni Mavrogonatou; Dimitris Kletsas; John Garcia; Birender Balain; James B. Richardson; Sally Roberts

Mesenchymal stromal cells (MSC) can be isolated from several regions of human umbilical cords, including Whartons jelly (WJ), artery, vein or cord lining. These MSC appear to be immune privileged and are promising candidates for cell therapy. However, isolating MSC from WJ, artery, vein or cord lining requires time‐consuming tissue dissection. MSC can be obtained easily via briefly digesting complete segments of the umbilical cord, likely containing heterogenous or mixed populations of MSC (MC‐MSC). MC‐MSC are generally less well characterized than WJ‐MSC, but nevertheless represent a potentially valuable population of MSC. This study aimed to further characterize MC‐MSC in comparison to WJ‐MSC and also the better‐characterized bone marrow‐derived MSC (BM‐MSC). MC‐MSC proliferated faster, with significantly faster doubling times reaching passage one 8.8 days sooner and surviving longer in culture than WJ‐MSC. All MSC retained the safety aspect of reducing telomere length with increasing passage number. MSC were also assessed for their ability to suppress T‐cell proliferation and for the production of key markers of pluripotency, embryonic stem cells, tolerogenicity (CD40, CD80, CD86 and HLA‐DR) and immunomodulation (indoleamine 2,3‐dioxygenase [IDO] and HLA‐G). The MC‐MSC population displayed all of the positive attributes of WJ‐MSC and BM‐MSC, but they were more efficient to obtain and underwent more population doublings than from WJ, suggesting that MC‐MSC are promising candidates for allogeneic cell therapy in regenerative medicine.


Acta Orthopaedica | 2016

Ageing in the musculoskeletal system

Sally Roberts; Pauline Colombier; Aneka Sowman; Claire Mennan; Jan Duedal Rölfing; Jérôme Guicheux; James R. Edwards

ABSTRACT The extent of ageing in the musculoskeletal system during the life course affects the quality and length of life. Loss of bone, degraded articular cartilage, and degenerate, narrowed intervertebral discs are primary features of an ageing skeleton, and together they contribute to pain and loss of mobility. This review covers the cellular constituents that make up some key components of the musculoskeletal system and summarizes discussion from the 2015 Aarhus Regenerative Orthopaedic Symposium (AROS) (Regeneration in the Ageing Population) about how each particular cell type alters within the ageing skeletal microenvironment.


Cartilage | 2018

Human Articular Chondrocytes Retain Their Phenotype in Sustained Hypoxia While Normoxia Promotes Their Immunomodulatory Potential

Claire Mennan; John Garcia; Helen S. McCarthy; Sharon Owen; Jade Perry; Karina T. Wright; Robin Banerjee; James B. Richardson; Sally Roberts

Objective To assess the phenotype of human articular chondrocytes cultured in normoxia (21% O2) or continuous hypoxia (2% O2). Design Chondrocytes were extracted from patients undergoing total knee replacement (n = 5) and cultured in ~21% (normoxic chondrocytes, NC) and 2% (hypoxic chondrocytes, HC) oxygen in both monolayer and 3-dimensional (3D) pellet culture and compared with freshly isolated chondrocytes (FC). Cells were assessed by flow cytometry for markers indicative of mesenchymal stromal cells (MSCs), chondrogenic-potency and dedifferentiation. Chondrogenic potency and immunomodulatory gene expression was assessed in NC and HC by reverse transcription quantitative polymerase chain reaction. Immunohistochemistry was used to assess collagen II production following 3D pellet culture. Results NC were positive (>97%, n = 5) for MSC markers, CD73, CD90, and CD105, while HC demonstrated <90% positivity (n = 4) and FC (n = 5) less again (CD73 and CD90 <20%; CD105 <40%). The markers CD166 and CD151, indicative of chondrogenic de-differentiation, were significantly higher on NC compared with HC and lowest on FC. NC also produced the highest levels of CD106 and showed the greatest levels of IDO expression, following interferon-γ stimulation, indicating immunomodulatory potential. NC produced the highest levels of CD49c (>60%) compared with HC and FC in which production was <2%. Hypoxic conditions upregulated expression of SOX9, frizzled-related protein (FRZB), fibroblast growth factor receptor 3 (FGFR3), and collagen type II (COL2A1) and downregulated activin receptor-like kinase 1 (ALK1) in 3 out of 4 patients compared with normoxic conditions for monolayer cells. Conclusions Hypoxic conditions encourage retention of a chondrogenic phenotype with some immunomodulatory potential, whereas normoxia promotes dedifferentiation of chondrocytes toward an MSC phenotype with loss of chondrogenic potency but enhanced immunomodulatory capacity.


Orthopaedic Journal of Sports Medicine | 2018

Magnetic Resonance Imaging Parameters at 1 Year Correlate With Clinical Outcomes Up to 17 Years After Autologous Chondrocyte Implantation

Helen S. McCarthy; Iain W. McCall; John M. Williams; Claire Mennan; Marit N. Dugard; James B. Richardson; Sally Roberts

Background: The ability to predict the long-term success of surgical treatment in orthopaedics is invaluable, particularly in clinical trials. The quality of repair tissue formed 1 year after autologous chondrocyte implantation (ACI) in the knee was analyzed and compared with clinical outcomes over time. Hypothesis: Better quality repair tissue and a better appearance on magnetic resonance imaging (MRI) 1 year after ACI lead to improved longer-term clinical outcomes. Study Design: Cohort study; Level of evidence, 3. Methods: Repair tissue quality was assessed using either MRI (11.5 ± 1.4 [n = 91] or 39.2 ± 18.5 [n = 76] months after ACI) or histology (16.3 ± 11.0 months [n = 102] after ACI). MRI scans were scored using the whole-organ magnetic resonance imaging score (WORMS) and the magnetic resonance observation of cartilage repair tissue (MOCART) score, with additional assessments of subchondral bone marrow and cysts. Histology of repair tissue was performed using the Oswestry cartilage score (OsScore) and the International Cartilage Repair Society (ICRS) II score. Clinical outcomes were assessed using the modified Lysholm score preoperatively, at the time of MRI or biopsy, and at a mean 8.4 ± 3.7 years (maximum, 17.8 years) after ACI. Results: At 12 months, the total MOCART score and some of its individual parameters correlated significantly with clinical outcomes. The degree of defect fill, overall signal intensity, and surface of repair tissue at 12 months also significantly correlated with longer-term outcomes. The presence of cysts or effusion (WORMS) significantly correlated with clinical outcomes at 12 months, while the presence of synovial cysts/bursae preoperatively or the absence of loose bodies at 12 months correlated significantly with long-term clinical outcomes. Thirty percent of repair tissue biopsies contained hyaline cartilage, 65% contained fibrocartilage, and 5% contained fibrous tissue. Despite no correlation between the histological scores and clinical outcomes at the time of biopsy, a lack of hyaline cartilage or poor basal integration was associated with increased pain; adhesions visible on MRI also correlated with significantly better histological scores. Conclusion: These results demonstrate that MRI at 12 months can predict longer-term clinical outcomes after ACI. Further investigation regarding the presence of cysts, effusion, and adhesions and their relationship with histological and clinical outcomes may yield new insights into the mechanisms of cartilage repair and potential sources of pain.


Osteoarthritis and Cartilage | 2014

Cells isolated from fat pad and synovial fluid. are they suitable for cartilage repair

J.K. Garica; Claire Mennan; James B. Richardson; Karina T. Wright; Sally Roberts


Osteoarthritis and Cartilage | 2018

Characterisation of synovial fluid cells of early osteoarthritis patients

John Garcia; Claire Mennan; Sally Roberts; James B. Richardson; P. Gallagher; Karina T. Wright

Collaboration


Dive into the Claire Mennan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

James B. Richardson

Robert Jones and Agnes Hunt Orthopaedic Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Garcia

Robert Jones and Agnes Hunt Orthopaedic Hospital

View shared research outputs
Top Co-Authors

Avatar

Helen S. McCarthy

Robert Jones and Agnes Hunt Orthopaedic Hospital

View shared research outputs
Top Co-Authors

Avatar

Birender Balain

Robert Jones and Agnes Hunt Orthopaedic Hospital

View shared research outputs
Top Co-Authors

Avatar

Robin Banerjee

Robert Jones and Agnes Hunt Orthopaedic Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge