Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire Palles is active.

Publication


Featured researches published by Claire Palles.


Nature Genetics | 2013

Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas

Claire Palles; Jean-Baptiste Cazier; Kimberley Howarth; Enric Domingo; Angela Jones; Peter Broderick; Zoe Kemp; Sarah L. Spain; Estrella Guarino; Israel Salguero; Amy Sherborne; Daniel Chubb; Luis Carvajal-Carmona; Yusanne Ma; Kulvinder Kaur; Sara E. Dobbins; Ella Barclay; Maggie Gorman; Lynn Martin; Michal Kovac; Sean Humphray; Anneke Lucassen; Christopher Holmes; David R. Bentley; Peter Donnelly; Jenny C. Taylor; Christos Petridis; Rebecca Roylance; Elinor Sawyer; David Kerr

Many individuals with multiple or large colorectal adenomas or early-onset colorectal cancer (CRC) have no detectable germline mutations in the known cancer predisposition genes. Using whole-genome sequencing, supplemented by linkage and association analysis, we identified specific heterozygous POLE or POLD1 germline variants in several multiple-adenoma and/or CRC cases but in no controls. The variants associated with susceptibility, POLE p.Leu424Val and POLD1 p.Ser478Asn, have high penetrance, and POLD1 mutation was also associated with endometrial cancer predisposition. The mutations map to equivalent sites in the proofreading (exonuclease) domain of DNA polymerases ɛ and δ and are predicted to cause a defect in the correction of mispaired bases inserted during DNA replication. In agreement with this prediction, the tumors from mutation carriers were microsatellite stable but tended to acquire base substitution mutations, as confirmed by yeast functional assays. Further analysis of published data showed that the recently described group of hypermutant, microsatellite-stable CRCs is likely to be caused by somatic POLE mutations affecting the exonuclease domain.


Journal of the National Cancer Institute | 2011

Novel Breast Cancer Susceptibility Locus at 9q31.2: Results of a Genome-Wide Association Study

Olivia Fletcher; Nichola Johnson; Nick Orr; Fay J. Hosking; Lorna Gibson; Kate Walker; Diana Zelenika; Ivo Gut; Simon Heath; Claire Palles; Ben Coupland; Peter Broderick; Minouk J. Schoemaker; Michael E. Jones; Jill Williamson; Sarah Chilcott-Burns; Katarzyna Tomczyk; Gemma Simpson; Kevin B. Jacobs; Stephen J. Chanock; David J. Hunter; Ian Tomlinson; Anthony J. Swerdlow; Alan Ashworth; Gillian Ross; Isabel dos Santos Silva; Mark Lathrop; Richard S. Houlston; Julian Peto

BACKGROUND Genome-wide association studies have identified several common genetic variants associated with breast cancer risk. It is likely, however, that a substantial proportion of such loci have not yet been discovered. METHODS We compared 296,114 tagging single-nucleotide polymorphisms in 1694 breast cancer case subjects (92% with two primary cancers or at least two affected first-degree relatives) and 2365 control subjects, with validation in three independent series totaling 11,880 case subjects and 12,487 control subjects. Odds ratios (ORs) and associated 95% confidence intervals (CIs) in each stage and all stages combined were calculated using unconditional logistic regression. Heterogeneity was evaluated with Cochran Q and I(2) statistics. All statistical tests were two-sided. RESULTS We identified a novel risk locus for breast cancer at 9q31.2 (rs865686: OR = 0.89, 95% CI = 0.85 to 0.92, P = 1.75 × 10(-10)). This single-nucleotide polymorphism maps to a gene desert, the nearest genes being Kruppel-like factor 4 (KLF4, 636 kb centromeric), RAD23 homolog B (RAD23B, 794 kb centromeric), and actin-like 7A (ACTL7A, 736 kb telomeric). We also identified two variants (rs3734805 and rs9383938) mapping to 6q25.1 estrogen receptor 1 (ESR1), which were associated with breast cancer in subjects of northern European ancestry (rs3734805: OR = 1.19, 95% CI = 1.11 to 1.27, P = 1.35 × 10(-7); rs9383938: OR = 1.18, 95% CI = 1.11 to 1.26, P = 1.41 × 10(-7)). A variant mapping to 10q26.13, approximately 300 kb telomeric to the established risk locus within the second intron of FGFR2, was also associated with breast cancer risk, although not at genome-wide statistical significance (rs10510102: OR = 1.12, 95% CI = 1.07 to 1.17, P = 1.58 × 10(-6)). CONCLUSIONS These findings provide further evidence on the role of genetic variation in the etiology of breast cancer. Fine mapping will be needed to identify causal variants and to determine their functional effects.


Nature Genetics | 2012

Common variation near CDKN1A , POLD3 and SHROOM2 influences colorectal cancer risk

Malcolm G. Dunlop; Sara E. Dobbins; Susan M. Farrington; Angela Jones; Claire Palles; Nicola Whiffin; Albert Tenesa; Sarah L. Spain; Peter Broderick; Li-Yin Ooi; Enric Domingo; Claire Smillie; Marc Henrion; Matthew Frampton; Lynn Martin; Graeme Grimes; Maggie Gorman; Colin A. Semple; Yusanne P Ma; Ella Barclay; James Prendergast; Jean-Baptiste Cazier; Bianca Olver; Steven Penegar; Steven Lubbe; Ian Chander; Luis Carvajal-Carmona; Stephane Ballereau; Amy Lloyd; Jayaram Vijayakrishnan

We performed a meta-analysis of five genome-wide association studies to identify common variants influencing colorectal cancer (CRC) risk comprising 8,682 cases and 9,649 controls. Replication analysis was performed in case-control sets totaling 21,096 cases and 19,555 controls. We identified three new CRC risk loci at 6p21 (rs1321311, near CDKN1A; P = 1.14 × 10−10), 11q13.4 (rs3824999, intronic to POLD3; P = 3.65 × 10−10) and Xp22.2 (rs5934683, near SHROOM2; P = 7.30 × 10−10) This brings the number of independent loci associated with CRC risk to 20 and provides further insight into the genetic architecture of inherited susceptibility to CRC.


PLOS Genetics | 2011

Multiple common susceptibility variants near BMP pathway loci GREM1, BMP4, and BMP2 explain part of the missing heritability of colorectal cancer.

Ian Tomlinson; Luis Carvajal-Carmona; Sara E. Dobbins; Albert Tenesa; Angela Jones; Kimberley Howarth; Claire Palles; Peter Broderick; Emma Jaeger; Susan M. Farrington; Annabelle Lewis; James Prendergast; Alan Pittman; Evropi Theodoratou; Bianca Olver; Marion Walker; Steven Penegar; Ella Barclay; Nicola Whiffin; Lynn Martin; Stephane Ballereau; Amy Lloyd; Maggie Gorman; Steven Lubbe; Bryan Howie; Jonathan Marchini; Clara Ruiz-Ponte; Ceres Fernandez-Rozadilla; Antoni Castells; Angel Carracedo

Genome-wide association studies (GWAS) have identified 14 tagging single nucleotide polymorphisms (tagSNPs) that are associated with the risk of colorectal cancer (CRC), and several of these tagSNPs are near bone morphogenetic protein (BMP) pathway loci. The penalty of multiple testing implicit in GWAS increases the attraction of complementary approaches for disease gene discovery, including candidate gene- or pathway-based analyses. The strongest candidate loci for additional predisposition SNPs are arguably those already known both to have functional relevance and to be involved in disease risk. To investigate this proposition, we searched for novel CRC susceptibility variants close to the BMP pathway genes GREM1 (15q13.3), BMP4 (14q22.2), and BMP2 (20p12.3) using sample sets totalling 24,910 CRC cases and 26,275 controls. We identified new, independent CRC predisposition SNPs close to BMP4 (rs1957636, P = 3.93×10−10) and BMP2 (rs4813802, P = 4.65×10−11). Near GREM1, we found using fine-mapping that the previously-identified association between tagSNP rs4779584 and CRC actually resulted from two independent signals represented by rs16969681 (P = 5.33×10−8) and rs11632715 (P = 2.30×10−10). As low-penetrance predisposition variants become harder to identify—owing to small effect sizes and/or low risk allele frequencies—approaches based on informed candidate gene selection may become increasingly attractive. Our data emphasise that genetic fine-mapping studies can deconvolute associations that have arisen owing to independent correlation of a tagSNP with more than one functional SNP, thus explaining some of the apparently missing heritability of common diseases.


Human Molecular Genetics | 2013

DNA polymerase ɛ and δ exonuclease domain mutations in endometrial cancer

David N. Church; Sarah Briggs; Claire Palles; Enric Domingo; Stephen J. Kearsey; Jonathon M. Grimes; Maggie Gorman; Lynn Martin; Kimberley Howarth; Shirley Hodgson; Kulvinder Kaur; Jenny C. Taylor; Ian Tomlinson

Accurate duplication of DNA prior to cell division is essential to suppress mutagenesis and tumour development. The high fidelity of eukaryotic DNA replication is due to a combination of accurate incorporation of nucleotides into the nascent DNA strand by DNA polymerases, the recognition and removal of mispaired nucleotides (proofreading) by the exonuclease activity of DNA polymerases δ and ɛ, and post-replication surveillance and repair of newly synthesized DNA by the mismatch repair (MMR) apparatus. While the contribution of defective MMR to neoplasia is well recognized, evidence that faulty DNA polymerase activity is important in cancer development has been limited. We have recently shown that germline POLE and POLD1 exonuclease domain mutations (EDMs) predispose to colorectal cancer (CRC) and, in the latter case, to endometrial cancer (EC). Somatic POLE mutations also occur in 5–10% of sporadic CRCs and underlie a hypermutator, microsatellite-stable molecular phenotype. We hypothesized that sporadic ECs might also acquire somatic POLE and/or POLD1 mutations. Here, we have found that missense POLE EDMs with good evidence of pathogenic effects are present in 7% of a set of 173 endometrial cancers, although POLD1 EDMs are uncommon. The POLE mutations localized to highly conserved residues and were strongly predicted to affect proofreading. Consistent with this, POLE-mutant tumours were hypermutated, with a high frequency of base substitutions, and an especially large relative excess of G:C>T:A transversions. All POLE EDM tumours were microsatellite stable, suggesting that defects in either DNA proofreading or MMR provide alternative mechanisms to achieve genomic instability and tumourigenesis.


Clinical Cancer Research | 2015

POLE Proofreading Mutations Elicit an Antitumor Immune Response in Endometrial Cancer

Inge C. Van Gool; Florine A. Eggink; Luke Freeman-Mills; Ellen Stelloo; Emanuele Marchi; Marco de Bruyn; Claire Palles; Remi A. Nout; Cornelis D. de Kroon; Elisabeth M. Osse; Paul Klenerman; Carien L. Creutzberg; Ian Tomlinson; Vincent T.H.B.M. Smit; Hans W. Nijman; Tjalling Bosse; David N. Church

Purpose: Recent studies have shown that 7% to 12% of endometrial cancers are ultramutated due to somatic mutation in the proofreading exonuclease domain of the DNA replicase POLE. Interestingly, these tumors have an excellent prognosis. In view of the emerging data linking mutation burden, immune response, and clinical outcome in cancer, we investigated whether POLE-mutant endometrial cancers showed evidence of increased immunogenicity. Experimental Design: We examined immune infiltration and activation according to tumor POLE proofreading mutation in a molecularly defined endometrial cancer cohort including 47 POLE-mutant tumors. We sought to confirm our results by analysis of RNAseq data from the TCGA endometrial cancer series and used the same series to examine whether differences in immune infiltration could be explained by an enrichment of immunogenic neoepitopes in POLE-mutant endometrial cancers. Results: Compared with other endometrial cancers, POLE mutants displayed an enhanced cytotoxic T-cell response, evidenced by increased numbers of CD8+ tumor-infiltrating lymphocytes and CD8A expression, enrichment for a tumor-infiltrating T-cell gene signature, and strong upregulation of the T-cell cytotoxic differentiation and effector markers T-bet, Eomes, IFNG, PRF, and granzyme B. This was accompanied by upregulation of T-cell exhaustion markers, consistent with chronic antigen exposure. In silico analysis confirmed that POLE-mutant cancers are predicted to display more antigenic neoepitopes than other endometrial cancers, providing a potential explanation for our findings. Conclusions: Ultramutated POLE proofreading-mutant endometrial cancers are characterized by a robust intratumoral T-cell response, which correlates with, and may be caused by an enrichment of antigenic neopeptides. Our study provides a plausible mechanism for the excellent prognosis of these cancers. Clin Cancer Res; 21(14); 3347–55. ©2015 AACR.


Lancet Oncology | 2015

Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: a systematic review and meta-analysis of individual patient data

Didier Meulendijks; Linda M. Henricks; Gabe S. Sonke; Maarten J. Deenen; Tanja K. Froehlich; Ursula Amstutz; Carlo R. Largiadèr; Ba Jennings; Anthony M. Marinaki; Jeremy Sanderson; Zdenek Kleibl; Petra Kleiblova; Matthias Schwab; Ulrich M. Zanger; Claire Palles; Ian Tomlinson; Eva Gross; André B.P. van Kuilenburg; Cornelis J. A. Punt; Miriam Koopman; Jos H. Beijnen; Annemieke Cats; Jan H. M. Schellens

BACKGROUND The best-known cause of intolerance to fluoropyrimidines is dihydropyrimidine dehydrogenase (DPD) deficiency, which can result from deleterious polymorphisms in the gene encoding DPD (DPYD), including DPYD*2A and c.2846A>T. Three other variants-DPYD c.1679T>G, c.1236G>A/HapB3, and c.1601G>A-have been associated with DPD deficiency, but no definitive evidence for the clinical validity of these variants is available. The primary objective of this systematic review and meta-analysis was to assess the clinical validity of c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity. METHODS We did a systematic review of the literature published before Dec 17, 2014, to identify cohort studies investigating associations between DPYD c.1679T>G, c.1236G>A/HapB3, and c.1601G>A and severe (grade ≥3) fluoropyrimidine-associated toxicity in patients treated with fluoropyrimidines (fluorouracil, capecitabine, or tegafur-uracil as single agents, in combination with other anticancer drugs, or with radiotherapy). Individual patient data were retrieved and analysed in a multivariable analysis to obtain an adjusted relative risk (RR). Effect estimates were pooled by use of a random-effects meta-analysis. The threshold for significance was set at a p value of less than 0·0167 (Bonferroni correction). FINDINGS 7365 patients from eight studies were included in the meta-analysis. DPYD c.1679T>G was significantly associated with fluoropyrimidine-associated toxicity (adjusted RR 4·40, 95% CI 2·08-9·30, p<0·0001), as was c.1236G>A/HapB3 (1·59, 1·29-1·97, p<0·0001). The association between c.1601G>A and fluoropyrimidine-associated toxicity was not significant (adjusted RR 1·52, 95% CI 0·86-2·70, p=0·15). Analysis of individual types of toxicity showed consistent associations of c.1679T>G and c.1236G>A/HapB3 with gastrointestinal toxicity (adjusted RR 5·72, 95% CI 1·40-23·33, p=0·015; and 2·04, 1·49-2·78, p<0·0001, respectively) and haematological toxicity (adjusted RR 9·76, 95% CI 3·03-31·48, p=0·00014; and 2·07, 1·17-3·68, p=0·013, respectively), but not with hand-foot syndrome. DPYD*2A and c.2846A>T were also significantly associated with severe fluoropyrimidine-associated toxicity (adjusted RR 2·85, 95% CI 1·75-4·62, p<0·0001; and 3·02, 2·22-4·10, p<0·0001, respectively). INTERPRETATION DPYD variants c.1679T>G and c.1236G>A/HapB3 are clinically relevant predictors of fluoropyrimidine-associated toxicity. Upfront screening for these variants, in addition to the established variants DPYD*2A and c.2846A>T, is recommended to improve the safety of patients with cancer treated with fluoropyrimidines. FUNDING None.


Human Molecular Genetics | 2014

Identification of susceptibility loci for colorectal cancer in a genome-wide meta-analysis

Nicola Whiffin; Fay J. Hosking; Susan M. Farrington; Claire Palles; Sara E. Dobbins; Lina Zgaga; Amy Lloyd; Ben Kinnersley; Maggie Gorman; Albert Tenesa; Peter Broderick; Yufei Wang; Ella Barclay; Caroline Hayward; Lynn Martin; Daniel D. Buchanan; Aung Ko Win; John L. Hopper; Mark A. Jenkins; Noralane M. Lindor; Polly A. Newcomb; Steve Gallinger; David V. Conti; Fred Schumacher; Graham Casey; Tao Liu; Harry Campbell; Annika Lindblom; Richard S. Houlston; Ian Tomlinson

To identify common variants influencing colorectal cancer (CRC) risk, we performed a meta-analysis of five genome-wide association studies, comprising 5626 cases and 7817 controls of European descent. We conducted replication of top ranked single nucleotide polymorphisms (SNPs) in additional series totalling 14 037 cases and 15 937 controls, identifying a new CRC risk locus at 10q24.2 [rs1035209; odds ratio (OR) = 1.13, P = 4.54 × 10(-11)]. We also performed meta-analysis of our studies, with previously published data, of several recently purported CRC risk loci. We failed to find convincing evidence for a previously reported genome-wide association at rs11903757 (2q32.3). Of the three additional loci for which evidence of an association in Europeans has been previously described we failed to show an association between rs59336 (12q24.21) and CRC risk. However, for the other two SNPs, our analyses demonstrated new, formally significant associations with CRC. These are rs3217810 intronic in CCND2 (12p13.32; OR = 1.19, P = 2.16 × 10(-10)) and rs10911251 near LAMC1 (1q25.3; OR = 1.09, P = 1.75 × 10(-8)). Additionally, we found some evidence to support a relationship between, rs647161, rs2423297 and rs10774214 and CRC risk originally identified in East Asians in our European datasets. Our findings provide further insights into the genetic and biological basis of inherited genetic susceptibility to CRC.


Gastroenterology | 2015

Polymorphisms near TBX5 and GDF7 are associated with increased risk for Barrett's esophagus.

Claire Palles; Laura Chegwidden; Xinzhong Li; John M. Findlay; Garry Farnham; Francesc Castro Giner; Maikel P. Peppelenbosch; Michal Kovac; Claire L. Adams; Hans Prenen; Sarah Briggs; Rebecca Harrison; Scott Sanders; David MacDonald; Chris Haigh; A. T. Tucker; Sharon Love; Manoj Nanji; John deCaestecker; David Ferry; Barrie Rathbone; Julie Hapeshi; Hugh Barr; Paul Moayyedi; Peter H. Watson; Barbara Zietek; Neera Maroo; Timothy J. Underwood; Lisa Boulter; Hugh McMurtry

Background & Aims Barretts esophagus (BE) increases the risk of esophageal adenocarcinoma (EAC). We found the risk to be BE has been associated with single nucleotide polymorphisms (SNPs) on chromosome 6p21 (within the HLA region) and on 16q23, where the closest protein-coding gene is FOXF1. Subsequently, the Barretts and Esophageal Adenocarcinoma Consortium (BEACON) identified risk loci for BE and esophageal adenocarcinoma near CRTC1 and BARX1, and within 100 kb of FOXP1. We aimed to identify further SNPs that increased BE risk and to validate previously reported associations. Methods We performed a genome-wide association study (GWAS) to identify variants associated with BE and further analyzed promising variants identified by BEACON by genotyping 10,158 patients with BE and 21,062 controls. Results We identified 2 SNPs not previously associated with BE: rs3072 (2p24.1; odds ratio [OR] = 1.14; 95% CI: 1.09–1.18; P = 1.8 × 10−11) and rs2701108 (12q24.21; OR = 0.90; 95% CI: 0.86–0.93; P = 7.5 × 10−9). The closest protein-coding genes were respectively GDF7 (rs3072), which encodes a ligand in the bone morphogenetic protein pathway, and TBX5 (rs2701108), which encodes a transcription factor that regulates esophageal and cardiac development. Our data also supported in BE cases 3 risk SNPs identified by BEACON (rs2687201, rs11789015, and rs10423674). Meta-analysis of all data identified another SNP associated with BE and esophageal adenocarcinoma: rs3784262, within ALDH1A2 (OR = 0.90; 95% CI: 0.87–0.93; P = 3.72 × 10−9). Conclusions We identified 2 loci associated with risk of BE and provided data to support a further locus. The genes we found to be associated with risk for BE encode transcription factors involved in thoracic, diaphragmatic, and esophageal development or proteins involved in the inflammatory response.


Scientific Reports | 2015

A new GWAS and meta-analysis with 1000Genomes imputation identifies novel risk variants for colorectal cancer

Nada A. Al-Tassan; Nicola Whiffin; Fay J. Hosking; Claire Palles; Susan M. Farrington; Sara E. Dobbins; Rebecca Harris; Maggie Gorman; Albert Tenesa; Brian F. Meyer; Salma M. Wakil; Ben Kinnersley; Harry Campbell; Lynn Martin; Christopher G. Smith; Shelley Idziaszczyk; Ella Barclay; Tim Maughan; Richard S. Kaplan; Rachel Kerr; David Kerr; Daniel D. Buchannan; Aung Ko Win; John L. Hopper; Mark A. Jenkins; Noralane M. Lindor; Polly A. Newcomb; Steve Gallinger; David V. Conti; Fred Schumacher

Genome-wide association studies (GWAS) of colorectal cancer (CRC) have identified 23 susceptibility loci thus far. Analyses of previously conducted GWAS indicate additional risk loci are yet to be discovered. To identify novel CRC susceptibility loci, we conducted a new GWAS and performed a meta-analysis with five published GWAS (totalling 7,577 cases and 9,979 controls of European ancestry), imputing genotypes utilising the 1000 Genomes Project. The combined analysis identified new, significant associations with CRC at 1p36.2 marked by rs72647484 (minor allele frequency [MAF] = 0.09) near CDC42 and WNT4 (P = 1.21 × 10−8, odds ratio [OR] = 1.21 ) and at 16q24.1 marked by rs16941835 (MAF = 0.21, P = 5.06 × 10−8; OR = 1.15) within the long non-coding RNA (lncRNA) RP11-58A18.1 and ~500 kb from the nearest coding gene FOXL1. Additionally we identified a promising association at 10p13 with rs10904849 intronic to CUBN (MAF = 0.32, P = 7.01 × 10-8; OR = 1.14). These findings provide further insights into the genetic and biological basis of inherited genetic susceptibility to CRC. Additionally, our analysis further demonstrates that imputation can be used to exploit GWAS data to identify novel disease-causing variants.

Collaboration


Dive into the Claire Palles's collaboration.

Top Co-Authors

Avatar

Ian Tomlinson

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Broderick

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Sara E. Dobbins

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

David N. Church

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard S. Houlston

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge