Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire S. Waddington is active.

Publication


Featured researches published by Claire S. Waddington.


BMJ | 2010

Safety and immunogenicity of AS03B adjuvanted split virion versus non-adjuvanted whole virion H1N1 influenza vaccine in UK children aged 6 months-12 years: open label, randomised, parallel group, multicentre study.

Claire S. Waddington; Woolf T. Walker; Clarissa Oeser; A Reiner; Tessa M. John; S Wilkins; Michelle Casey; P Eccleston; Ruth J. Allen; Ifeanyichukwu O. Okike; Shamez Ladhani; Elizabeth Sheasby; Katja Hoschler; Nick Andrews; Pauline Waight; Andrew Collinson; Paul T. Heath; Adam Finn; Saul N. Faust; Matthew D. Snape; Elizabeth Miller; Andrew J. Pollard

Objectives To compare the safety, reactogenicity, and immunogenicity of an adjuvanted split virion H1N1 vaccine and a non-adjuvanted whole virion vaccine used in the pandemic immunisation programme in the United Kingdom. Design Open label, randomised, parallel group, phase II study. Setting Five UK centres (Oxford, Southampton, Bristol, Exeter, and London). Participants Children aged 6 months to less than 13 years for whom a parent or guardian had provided written informed consent and who were able to comply with study procedures were eligible. Those with laboratory confirmed pandemic H1N1 influenza or clinically diagnosed disease meriting antiviral treatment, allergy to egg or any other vaccine components, or coagulation defects, or who were severely immunocompromised or had recently received blood products were excluded. Children were grouped by age: 6 months-<3 years (younger group) and 3-<13 years (older group). Recruitment was by media advertising and direct mailing. Recruitment visits were attended by 949 participants, of whom 943 were enrolled and 937 included in the per protocol analysis. Interventions Participants were randomised 1:1 to receive AS03B (tocopherol based oil in water emulsion) adjuvanted split virion vaccine derived from egg culture or non-adjuvanted whole virion vaccine derived from cell culture. Both were given as two doses 21 days apart. Reactogenicity data were collected for one week after immunisation by diary card. Serum samples were collected at baseline and after the second dose. Main outcome measures Primary reactogenicity end points were frequency and severity of fever, tenderness, swelling, and erythema after vaccination. Immunogenicity was measured by microneutralisation and haemagglutination inhibition assays. The primary immunogenicity objective was a comparison between vaccines of the percentage of participants showing seroconversion by the microneutralisation assay (fourfold rise to a titre of ≥1:40 from before vaccination to three weeks after the second dose). Results Seroconversion rates were higher after the adjuvanted split virion vaccine than after the whole virion vaccine, most notably in the youngest children (163 of 166 participants with paired serum samples (98.2%, 95% confidence interval 94.8% to 99.6%) v 157 of 196 (80.1%, 73.8% to 85.5%), P<0.001) in children under 3 years and 226 of 228 (99.1%, 96.9% to 99.9%) v 95.9%, 92.4% to 98.1%, P=0.03) in those over 3 years). The adjuvanted split virion vaccine was more reactogenic than the whole virion vaccine, with more frequent systemic reactions and severe local reactions in children aged over 5 years after dose one (13 (7.2%, 3.9% to 12%) v 2 (1.1%, 0.1% to 3.9%), P<0.001) and dose two (15 (8.5%, 4.8% to 13.7%) v 2 (1.1%, 0.1% to 4.1%), P<0.002) and after dose two in those under 5 years (15 (5.9%, 3.3% to 9.6%) v 0 (0.0%, 0% to 1.4%), P<0.001). Dose two of the adjuvanted split virion vaccine was more reactogenic than dose one, especially for fever ≥38ºC in those aged under 5 (24 (8.9%, 5.8% to 12.9%) v 57 (22.4%, 17.5% to 28.1%), P<0.001). Conclusions In this first direct comparison of an AS03B adjuvanted split virion versus whole virion non-adjuvanted H1N1 vaccine, the adjuvanted vaccine, while more reactogenic, was more immunogenic and, importantly, achieved high seroconversion rates in children aged less than 3 years. This indicates the potential for improved immunogenicity of influenza vaccines in this age group. Trial registration Clinical trials.gov NCT00980850; ISRCTN89141709.


Clinical Infectious Diseases | 2014

An outpatient, ambulant-design, controlled human infection model using escalating doses of Salmonella Typhi challenge delivered in sodium bicarbonate solution.

Claire S. Waddington; Thomas C. Darton; Claire Jones; Kathryn Haworth; Anna Peters; Tessa M. John; Ben Thompson; Simon Kerridge; Robert A. Kingsley; Liqing Zhou; Kathryn E. Holt; Ly-Mee Yu; Stephen Lockhart; Jeremy Farrar; Marcelo B. Sztein; Gordon Dougan; Brian Angus; Myron M. Levine; Andrew J. Pollard

Oral delivery of escalating-dose Salmonella Typhi (Quailes strain) using sodium bicarbonate buffer solution in an outpatient, ambulant-design human infection study demonstrates safety, requires a lower challenge inoculum than that used in historical studies, and offers a unique insight into host–pathogen interactions.


Health Technology Assessment | 2010

Open-label, randomised, parallel-group, multicentre study to evaluate the safety, tolerability and immunogenicity of an AS03(B)/oil-in-water emulsion-adjuvanted (AS03(B)) split-virion versus non-adjuvanted whole-virion H1N1 influenza vaccine in UK children 6 months to 12 years of age.

Claire S. Waddington; Nick Andrews; Katja Hoschler; Woolf T. Walker; Clarissa Oeser; A Reiner; Tessa M. John; S Wilkins; Michelle Casey; P Eccleston; Ruth J. Allen; Ifeanyichukwu O. Okike; Shamez Ladhani; Elizabeth Sheasby; Pauline Waight; Andrew Collinson; Paul T. Heath; Adam Finn; Saul N. Faust; Matthew D. Snape; Elizabeth Miller; Andrew J. Pollard

OBJECTIVE To evaluate the safety, tolerability and immunogenicity of an AS03(B)/oil-in-water emulsion-adjuvanted (AS03(B)) split-virion versus non-adjuvanted whole-virion H1N1 influenza vaccine in UK children aged 6 months to 12 years. DESIGN Multicentre, randomised, head-to-head, open-label trial. SETTING Five UK sites (Oxford, Bristol, Southampton, Exeter and London). PARTICIPANTS Children aged 6 months to < 13 years, for whom a parent or guardian had provided written informed consent and who were able to comply with study procedures, were eligible for inclusion. INTERVENTIONS A tocopherol/oil-in-water emulsion-adjuvanted (AS03(B)) egg culture-derived split-virion H1N1 vaccine and a non-adjuvanted cell culture-derived whole-virion vaccine, given as a two-dose schedule, 21 days apart, were compared. Participants were grouped into those aged 6 months to < 3 years (younger group) and 3 years to < 13 years of age (older group) and were randomised by study investigators (1 : 1 ratio) to receive one of the two vaccines. Vaccines were administered by intramuscular injection (deltoid or anterior-lateral thigh, depending on age and muscle bulk). Local reactions and systemic symptoms were collected for 1 week post immunisation, and serum was collected at baseline and after the second dose. To assess safety and tolerability, parents or guardians recorded the following information in diary cards from days 0-7 post vaccination: axillary temperature, injection site reactions, solicited and unsolicited systemic symptoms, and medications. MAIN OUTCOME MEASURE Comparison between vaccines of the percentage of participants demonstrating seroconversion by microneutralisation assay. RESULTS Among 937 children receiving vaccine, per-protocol seroconversion rates were higher after the AS03(B)-adjuvanted vaccine than after the whole-virion vaccine (98.2% vs 80.1% in children < 3 years, 99.1% vs 95.9% among those aged 3-12 years), as were severe local reactions (3.6% vs 0.0% in those under 5 years, 7.8% vs 1.1% in those aged 5-12 years), irritability in children < 5 years (46.7% vs 32.0%), and muscle pain in older children (28.9% vs 13.2%). The second dose of the adjuvanted vaccine was more reactogenic than the first, especially for fever > 38.0°C in those under 5 years of age (8.9% vs 22.4%). CONCLUSION The adjuvanted vaccine, although reactogenic, was more immunogenic, especially in younger children, indicating the potential for improved immunogenicity of influenza vaccines in this age group. TRIAL REGISTRATION NUMBER ISRCTN89141709.


Vaccine | 2014

Working towards a group A streptococcal vaccine: report of a collaborative Trans-Tasman workshop.

Nicole J. Moreland; Claire S. Waddington; Deborah A. Williamson; Shiranee Sriskandan; Pierre R. Smeesters; Thomas Proft; Andrew C. Steer; Mark J. Walker; Edward N. Baker; Michael G. Baker; Diana Lennon; Rod Dunbar; Jonathan R. Carapetis; John D. Fraser

Group A Streptococcus (GAS) infections represent a major public health burden in both developing and developed countries. In Australia and New Zealand GAS associated diseases are serious problems in Indigenous populations and a major cause of health inequality. Political recognition of these inequalities is providing impetus for strategies that reduce GAS disease and the development of a GAS vaccine now has governmental support in both Australia and New Zealand. Accordingly, an expert workshop was convened in March 2013 to consider available data on GAS vaccines. M-protein based vaccines constructed from the hyper-variable N-terminal region (30-valent vaccine) or the conserved C-repeat domain (J8 vaccine) were reviewed together with vaccine candidates identified using multi high-throughput approaches. Performing a comprehensive assessment of regional GAS strain epidemiology, defining the immune correlates of protection, and the establishment of clinical trial sites were identified as critical activities for a Trans-Tasman vaccine development programme.


Journal of Infection | 2014

The challenge of enteric fever

Claire S. Waddington; Thomas C. Darton; Andrew J. Pollard

Enteric fever, a non-specific, systemic infection caused by S. Typhi or Paratyphi A, B or C, is common in resource-limited regions of the world, where poor sanitation infrastructure facilitates faeco-oral transmission. Prompt treatment with appropriate antibiotics minimises illness severity, but presentation to health care facilities is often delayed because of the non-specific nature of the symptoms and the lack of reliable diagnostic tests. Disease prevention requires significant investment in provision of clean water and sanitation in the long term; vaccination offers a more realistic strategy for medium term control. However, implementation of existing vaccines and development of more efficacious vaccines has been hindered by the lack of an established correlate of protection and under appreciation of the true disease burden. Human microbial infection studies could provide a vehicle for the rapid evaluation of novel vaccines and investigation of the immunobiology of enteric infection.


Current Opinion in Infectious Diseases | 2013

Prospects for prevention of Salmonella infection in children through vaccination.

Alastair C. McGregor; Claire S. Waddington; Andrew J. Pollard

Purpose of review Strains of Salmonella enterica subsp. enterica are amongst the most commonly identified invasive bacterial pathogens in resource-poor settings, and cause significant mortality, particularly in children. In this study we review recent progress in the development of vaccines against S. Typhi, S. Paratyphi and nontyphoidal Salmonella for children. Recent findings Typhoid remains common and S. Paratyphi A is increasingly recognized as a cause of enteric fever in Asia. In rural Africa, nontyphoidal salmonellae are among the most common invasive bacterial infections, although S. Typhi predominates in some urban centres. Licensed vaccines against typhoid have moderate but useful efficacy but neither of the two available vaccines can be used in infants. Although Ty21a may afford some cross-protection against S. Paratyphi B, there are no vaccines that specifically target paratyphoid or any nontyphoidal Salmonella. Several live attenuated vaccines are under development and may offer some advantages over Ty21a. Vi-conjugate vaccines should offer children excellent protection from typhoid once licensed. Summary There are few effective vaccines against Salmonella sp. and those that do exist target only one serovar, S. Typhi. Research is urgently needed to combat emerging agents of enteric fever such as S. Paratyphi A as well as nontyphoidal serovars, which commonly cause invasive disease in Africa.


Vaccine | 2011

Predictors of immune response and reactogenicity to AS03B-adjuvanted split virion and non-adjuvanted whole virion H1N1 (2009) pandemic influenza vaccines

Nick Andrews; Woolf T. Walker; Adam Finn; Paul T. Heath; Andrew Collinson; Andrew J. Pollard; Matthew D. Snape; Saul N. Faust; Pauline Waight; Katja Hoschler; Liz Sheasby; Claire S. Waddington; Simon Kerridge; Jeremy Chalk; A Reiner; Tessa M. John; Margaret Fletcher; Ruth J. Allen; Natalie Fineman; Su Wilkins; Michelle Casey; Louise Michaelis; Clarissa Oeser; Ifeanyichukwu O. Okike; Shamez Ladhani; Elizabeth Miller

In 2009, 943 children aged 6 months to 10 years were randomised to receive two doses of an oil-in water AS03B-adjuvanted split virion or a non-adjuvanted whole virion H1N1 (2009) vaccine. The large numbers allowed investigation of possible predictors of immune response and reactogenicity. We used regression analysis to examine the effect of variables including past receipt of seasonal vaccine, antipyretics post-vaccination, interval between doses and pre-existing antibodies to H1N1 (2009) on immunogenicity. We also examined the relationship between immunogenicity and reactogenicity and whether prior infection or underlying conditions affected reactogenicity. For both vaccines, haemagglutination-inhibition titres were 60% higher in children with fever ≥38 °C after vaccination and 29% lower in those previously given seasonal vaccine. Early use of antipyretics did not affect immunogenicity. Post-vaccination titres were higher with longer intervals between doses and in those with evidence of prior infection, but reactogenicity in the latter was unaffected. In the adjuvanted vaccine group, reactions were more common in children with atopy. Both vaccines were safe and immunogenic in those with prior infection. Reduction in the interval between doses for earlier protection would be at the cost of reduced immunogenicity. The effect of seasonal vaccine on immunogenicity merits further investigation.


PLOS Pathogens | 2015

Activation of Salmonella Typhi-specific regulatory T cells in typhoid disease in a wild-type S. Typhi challenge model.

Monica A. McArthur; Stephanie Fresnay; Laurence S. Magder; Thomas C. Darton; Claire Jones; Claire S. Waddington; Christoph J. Blohmke; Gordon Dougan; Brian Angus; Myron M. Levine; Andrew J. Pollard; Marcelo B. Sztein

Salmonella Typhi (S. Typhi), the causative agent of typhoid fever, causes significant morbidity and mortality worldwide. Currently available vaccines are moderately efficacious, and identification of immunological responses associated with protection or disease will facilitate the development of improved vaccines. We investigated S. Typhi-specific modulation of activation and homing potential of circulating regulatory T cells (Treg) by flow and mass cytometry using specimens obtained from a human challenge study. Peripheral blood mononuclear cells were obtained from volunteers pre- and at multiple time-points post-challenge with wild-type S. Typhi. We identified differing patterns of S. Typhi-specific modulation of the homing potential of circulating Treg between volunteers diagnosed with typhoid (TD) and those who were not (No TD). TD volunteers demonstrated up-regulation of the gut homing molecule integrin α4ß7 pre-challenge, followed by a significant down-regulation post-challenge consistent with Treg homing to the gut. Additionally, S. Typhi-specific Treg from TD volunteers exhibited up-regulation of activation molecules post-challenge (e.g., HLA-DR, LFA-1). We further demonstrate that depletion of Treg results in increased S. Typhi-specific cytokine production by CD8+ TEM in vitro. These results suggest that the tissue distribution of activated Treg, their characteristics and activation status may play a pivotal role in typhoid fever, possibly through suppression of S. Typhi-specific effector T cell responses. These studies provide important novel insights into the regulation of immune responses that are likely to be critical in protection against typhoid and other enteric infectious diseases.


PLOS Neglected Tropical Diseases | 2015

Rapidly Escalating Hepcidin and Associated Serum Iron Starvation Are Features of the Acute Response to Typhoid Infection in Humans.

Thomas C. Darton; Christoph J. Blohmke; Eleni Giannoulatou; Claire S. Waddington; Claire Jones; Pamela Sturges; Craig Webster; Hal Drakesmith; Andrew J. Pollard; Andrew E. Armitage

Background Iron is a key pathogenic determinant of many infectious diseases. Hepcidin, the hormone responsible for governing systemic iron homeostasis, is widely hypothesized to represent a key component of nutritional immunity through regulating the accessibility of iron to invading microorganisms during infection. However, the deployment of hepcidin in human bacterial infections remains poorly characterized. Typhoid fever is a globally significant, human-restricted bacterial infection, but understanding of its pathogenesis, especially during the critical early phases, likewise is poorly understood. Here, we investigate alterations in hepcidin and iron/inflammatory indices following experimental human typhoid challenge. Methodology/Principal Findings Fifty study participants were challenged with Salmonella enterica serovar Typhi and monitored for evidence of typhoid fever. Serum hepcidin, ferritin, serum iron parameters, C-reactive protein (CRP), and plasma IL-6 and TNF-alpha concentrations were measured during the 14 days following challenge. We found that hepcidin concentrations were markedly higher during acute typhoid infection than at baseline. Hepcidin elevations mirrored the kinetics of fever, and were accompanied by profound hypoferremia, increased CRP and ferritin, despite only modest elevations in IL-6 and TNF-alpha in some individuals. During inflammation, the extent of hepcidin upregulation associated with the degree of hypoferremia. Conclusions/Significance We demonstrate that strong hepcidin upregulation and hypoferremia, coincident with fever and systemic inflammation, are hallmarks of the early innate response to acute typhoid infection. We hypothesize that hepcidin-mediated iron redistribution into macrophages may contribute to S. Typhi pathogenesis by increasing iron availability for macrophage-tropic bacteria, and that targeting macrophage iron retention may represent a strategy for limiting infections with macrophage-tropic pathogens such as S. Typhi.


Journal of Infection | 2014

Management of invasive group A streptococcal infections.

Claire S. Waddington; Tom Snelling; Jonathan R. Carapetis

Invasive group A streptococcal (GAS) disease in children includes deep soft tissue infection, bacteraemia, bacteraemic pneumonia, meningitis and osteomyelitis. The expression of toxins and super antigens by GAS can complicate infection by triggering an overwhelming systemic inflammatory response, referred to as streptococcal toxic shock syndrome (STSS). The onset and progression of GAS disease can be rapid, and the associated mortality high. Prompt antibiotics therapy and early surgical debridement of infected tissue are essential. Adjunctive therapy with intravenous immunoglobulin and hyperbaric therapy may improve outcomes in severe disease. Nosocomial outbreaks and secondary cases in close personal contacts are not uncommon; infection control measures and consideration of prophylactic antibiotics to those at high risk are important aspects of disease control. To reduce a substantial part of the global burden of GAS disease, an affordable GAS vaccine with efficacy against a broad number of strains is needed.

Collaboration


Dive into the Claire S. Waddington's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gordon Dougan

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge